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Setting the scale - The inner structure of the atom

“ The nuclei is 10.000 times smaller than the atom.

“ Quarks, gluons, and electrons are 10.00 times smaller than the nuclei.
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What do-we know

Quantumy Chwomodynawmics QCD ?




Quantum Chwomodynamics - QCD

® (QCDis the theory of the strong interaction, where
the quarks and gluons are the fundamental degrees of
freedom.

® |Interactions are mediated by vector boson = gluon spin 1
® (Quarks have masses and gluons are massless perturbatively.

® QCDis arenormalizable theory, and its energy range of
validity goes from zero up to the Planck scale.

® Just need one observable to set the scale: Aqgcp ~ 300 MeV

® QCD is not an effective theory is the fundamental theory
of strong interactions.



One of its challenges is to understand, from first principles,
how quarks and gluons combine to create the hadrons we
find in the nature 2 mesons, barions, glueballs...

In the QCD IR region (strong regime) we have phenomena
such as confinement and chiral symmetry.

Both phenomena play a major role in the formation of
bound states.

For the above reasons, it is mandatory to explore the

strong regime of QCD.




We all know that, when we try to pull apart two eletric charges, the
force generated is proportional to 1/r?> (Coulomb force)

distance

®* However in QCD, when two color charges (quarks) are separated, the force
generated between them is constant (creation of a flux tube).

®* Asthe force between quarks does not decrease, this would require an

infinite amount of energy to separate them - CO‘V\ff/VI@WlW
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QED - Quantum Electrodynamics

served as a prototype to develop

QCD- Quantum Chromodynamics

Electric charge “ Color charge



Quantuwm Electrodynamicsy (QED)

Electrical charged particles interact through the exchanged of the
photons.

a=1/137

The strengh of the interaction is given by the fine structure

Quantum field theory which describes the eletromagnetism is the
Quantum Electrodynamics:QED

The most precise theory of the science!

The jewel of
physics

° Nobel prize
Sin-Itiro Tomonaga Julian Schwinger Richard P. Feynman 1965



® The QED Lagrangian is given by
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field strength tensor

PN SE——" -

electrow photor a
propagator ~  propagator ~ Secronphoton

® |n gauge theories V\oﬁ\.{mgxwmm

® Couplings and masses acquire quantum corrections. Then,
they will depend on the momenta scale.
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You might worry that the coupling becomes
infinite at

m(%) = m Q10 Gev
N u? ) 1/137 R~ ©

but at this scale quantum gravity effects are expected to dominate since
Planck scale is much below this energy (1012 GeV) - highly unlikely that
QED would be valid at this regime.
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Inverse of the QED running coupling

In QED the running coupling increases

OPAL Collaboration, Eur. Phys. J. C33 (2004) (as function of the momentum) very slowly
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QCD Lagrangioavv

The QCD dynamics are governed by the Lagrangian

£QCD — gluon Equarks Lgf Lghost

where Gluon self-interaction
1 (Non-Abelian character)
£g1uon = —Z(wa)2 AN+ Wi - E
Profound consequences!

wa = 6MA3 - 8,,AZ T ":fabcAZAIC/ Gluonic field stremgiivtensor
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® Asymptotically free—> Perturbation theory is valid for large values of Q?
® Essentially nonperturbative around Q° <2 GeV (~ 1 fermi)



Comparisor of the couplings

® Behavior of the QED and QCD the coupling constants depend on the distance (or
momentum) r =1/0Q

® In QED we have O*»u?

(1%)
Oz(Qz) — 1 @Mln (Q—j) (")

3 7
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1 2 ——— —— small 2
(::f:nQr) s(large?)

where a = a(Q?>— 0) = e?/4n = 1/137

a,(Q%)

® The perturbative QCD coupling

Ols(Qz) — aS(:u'z)
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h
quark loop

decreases for higher values of Q* if n; < 16.




QCD coupling constant
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Objects of interest:
Green’s functions

Full propagators defined as vaccum expectation
value of the fields

(QUIT{A;(2) AL (W)}HQ) = —iAG (z —y)  (QT{c* (@) ()} := iD*(z — y)

'\/\/\‘/\N\, '''' “ """""

Gluon propagator Ghost propagator
QT {$(2)(y)}Q) = iS(z — y)
—>—‘—>—

Quark propagator



Off-shell QCD Greew s functions

Green's functions:

Propagators and vertices

Although they are:
Gauge-dependent

Renormalization point (u) and scheme-dependent

However

They capture characteristic features of the underlying dynamics, both
perturbative and non-perturbative.

When appropriately combined they give rise to physical observables.

Crucial pieces for completing the QCD puzzle
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The nonperturbative QCD problems

The Green’s functions are crucial for exploring the outstanding
nonperturbative problems of QCD:

Confinement

Bound

States

generation



Nonpertubative tools

® Non-perturbative physics requires special tools.

I L

® For QCD we have (first principles): ‘

¢ Lattice simulations

® Space-time is discretized;

® The precision depends on the lattice spacing parameter and
volume.
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Lattlice S

Suppose we wanted to study the
Mona Lisa:

The first image is
the original.

Source: Blog Colegéo
de Particulas - IFSC

The second
Image comes
from putting the

Image on a The third image
lattice, you see comes from having
that we lose a smaller canvas

details about
small things
(effects of the

lattice space)

size so that we
cannot see the big
picture of the entire
image (small
volume)

If you're interested in only the broad features Mona Lisa’s face , then the lattice
iIsn’t so bad. But, if you are a fine art critic...

Source: Quantum Diaries



Schwinger-Dysovw equations - SDE
Insightful computational framework.

Equations of motion for off-shell Green's functions.

It can be understood as the generalization of the Euler-Lagrange equation

for a classical field (8.5/d¢ = 0).
Derived formally from the generating functional.
Infinite system of coupled nonlinear integral equations.

Inherently non-perturbative, but at the same time captures the
perturbative behavior = It accommodates the full range of physical
momenta.



How to-derive the SDTE?

Derived formally from the generating functional

O  _Sidl+Jé _
/ DS’

(se 7] ) 71n=0

'Ig;;s;e uatgﬁézf’viampactfbrmofequafmof motionw

One has a tower of non-linear coupled integral equations.

which is equivalent to

Derivation using functional methods:

C. D. Roberts and A. G. Williams, Prog. Part. Nucl. Phys. 33, 477-575 (1994)

R. Alkofer and L. von Smekal, Phys. Rept. 353, 281 (2001)

E. S. Swanson, AIP Conf. Proc. 1296, no.1, 75-121 (2010)

M. Q. Huber, Phys. Rept. 879, 1-92 (2020)

R.J. Rivers, Path Integral Methods in Quantum Field Theory, Cambridge University Press, New York (1990).



SDts -Diagrammalic way

® Although the functional method is the formal way to derive the SDEs, it
is quite abstract. Let us derive these equations in a diagrammatic way.

® First, let us do for QED which is easier than QCD.

® The full electron propagator is defined as

iS(z — 2') = (QT{Y(z)¢(z") D)

and diagramatically represented by

* The full electrovnw propagator is the sum all
conwnected diagrams which start and end with a electron leg.

Based on:
J.D.Bjorken and S.D.Drell, “Relativistic quantum fields”, McGraw Hill Book Company, New York (1965).
M.R.Pennington, J. Phys. Conf. Ser. 18, 1-73 (2005).



The connected diagrams can be separated in two
classes

7mproper: CAN be split into two by removing a single line.

Conwmnected _]
Diagroms Proper or one particle irreducible (1PI): CANNOT be split into

two by removing a single line.

Examples:

I
)
?
)
:;>

(a) ()




In the momentum space, we can write the full electron propagator, iS(p) as

iS(p) = iSo(p) + iSo(p)[—iX(p)]iS0(p)
+ 4S0(p) [—12(p)]iSo (p) [—i2(p)]iSo (p) + - - -

—()— - O OO

1S = 150 + ZS()[—ZZ]ZSQ + ZSO[—”LE]ZS()[—ZE]ZSO + .-

where  §So(p) = i(p —m)

is the electron propagator at tree level.

In addition, iX(p) represents the sum of all proper diagrams of one-electron
with momentum p (the external legs removed) - Electiron W—Wgy

~ix(p) = — —



The series

iS(p) = iSo(p) + iSo(p)[—iX(p)]iS0(p)
+ 4S0(p) [—12(p)]iSo (p) [—i2(p)]iSo (p) + - - -

() ,(),(),
> > = > + > > + + o
. N\

) = 50 +  iS[—iX])iSy  +  iSo[—iX)iSo[—iX]iSy  + -
can be summed (Dyson sum), leading us to Remember that
1 = .
]_ l1—=x - 7;)33
S(p) = S
p—m — X(p)

Full (complete, dressed)
Electron propagator

sum of all
1PI diagrams — full self-energy

. L.
> >




How do-we calcaudate the electirov
full self-energy?

® The electron full self-energy is given by

tlectronw SDE

-in(p) = (ieo)? [,

® We would count twice the following diagram, if we have added another
full vertex at u.

e

1A (p — k)T (p, k)iS (k)"




Photon SDE

® |n a similar way, we can build the SDE for the photon
propagator

1AM (z — o) = (QT{A*(x) A" (z") }|€2)

AP (x — ') = N

where the yellow circle represents the sum of all connected diagrams
(proper and improper).



® Once again, we separate the proper from the improper ones.

d N
N ED o B R e v

o Ye| (OO0

Proper (1PI) Improper

The sum of all 1Pl diagrams is:

. 2 _ P
iegI,n(q) = M/\/\_{\/.\Q(\’V iegll, (q)

vacuum polarization



In analogy to the electron case, we can express the full photon
propagator as

iA* (q) = iAG" (q) + iAG" (g)[iedno (@))iAG" (q) + -

_—z'g“”_—’iegz. v (—i)_—ze% B (= )z v Q
=~ @ 5 — 5 [P @I I (@) 5 +

mpw-w+mgw+m(>w@w

"(q) + ARG IIAT 4 iARM e i A [ie2I1,,
0 0 0

guv 62
A,LLV(Q): e | ng/J'A(Q)AI)/\(Q)

[q29u>\ — 6(2)Hu>\( )] A)\( ) = —g"”




The vacumwm polawigatiov

® The full vacuum polarization is given by the following equation

Photon SDE

o210 (@) = (—ica)(<1) / (ZW])Z Tr [7,iS(E)To (b, k + q)iS(k + q)]




SDE for the electron-photow vertex

Similarly, one can obtain the SDE for the electron-photon vertex

Scattering kernel — electron-positron = =




SDE tower for QED

N
Electron SDE

-1 -1
(:‘:)z(—)—)—::
p M
1

; ‘k —@
Ii/_
(A O ) = () - e . Photon SDE
v q q & q
k+q

/ z, Ptk /
b Z z v
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Need for a truncation scheme

® First, let us examine the SDE for the fermion in isolation

—1 —1
(;‘;>:<_)_>—: :’: >
P p H v D
k

S (p) = (f— m) + ie? / (;lw’; I (p, k)S (k)y*

® This equation is more complicated than it seems.

The full electron propagator (containing all order corrections) can be written as

S~ (p) = A(p*)p — B(p°)L o (p) = (p—m)

A and B are unknown functions

. _ B(p)
Notice that at tree level A(p?) =1and B(p?) =m M(p) = ==
A(p)

The pole of the propagator defines the mass of the particle. Dynamical mass



The full photon propagator, in general covariant gauges, can be written as

Au(g) = [gw — qu”] A(q )+§ng"

Here we will focus in the Landau gauge — £ =0

A(q2) w Is the full (all-order) photon propagator

Unknown quantity determined from its own SDE

At tree level, the photon propagator (in the Landau gauge) is given by

) grg] 1 1
AS(Q)=[9“—(]§] > Ao(¢®) =

| q q



/

The most general Lorentz structure of the full electron-photon is composed by 12
tensorial structures - [two momenta and a free Lorentz index |

Fu( 7k) — ’YVFI + pVF2 + kur3 + 7V}6F4 + /YI/%F5 + pV]5F6
+ p kL7 + kPl + kL9 + v P10 + pupkT11 + kupkT 12

where the form factors are unknown functions I'; := [';(p, k,p — k)
which satisfy their own SDE. \

v

At tree level > ['g(p, k) =~

7,

> . ~ Z
umm< = /LW<+ "
K g e
» » N N



To sum up, we have:

- 2 unknowns functions, A and B from full electron propagator, which

S~ (p) = A(p*)p — B(p*)I

Nt

are coupled + 12 (form factors of the vertex) unknowns functions:

Fu( 7k) — 71/1_‘1 + qu2 + kuF3 + ’YV¢F4 + ,)/I/kl_‘f) + pV¢F6
+ pu L7 + kypL's + ku kD9 + v PHT 10 + pupkT11 + kupET 12

; i v vtk /

ki U Z o~ “

-1 -1 v L
(@)= (poal = @ P
q b » » A

Auv(q) = [gm/ — q;‘jv] Al +



® To understand the basic principles of the dynamical mass generation, it
is not necessary to solve this intricate coupled system.

® Let's make some approximations to get the general idea of the problem.

® We will approximate the photon propagator and the vertex by their tree
level values, i.e.

A(¢?) = 1 I(p, k) =~

® Then, only the electron is treated nonperturbatively. Diagrammatically
we have

- 7y
— @) m . = e —

Rainbow approximation




