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Goal of this talk

* Provide a high level overview on optimization for design
and control

— This is another massive research areas and there is no
way to cover a fraction of these topics in a few lectures

* Provide some resources to get you started
— Python centric ... sorry

« Cover some terminology
« Hopefully get you excited ©
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What is Data Science?

* Interdisciplinary field that leverages computer science, mathematics, and
domain expertise to extract knowledge and insights from data
e Collaborative effort built on teams of experts

Machine Maths_&
Learning Statistics

Data

Traditional Analysis

Software
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Al for Science Report

“New Deep Learning methods are required to detect
anomalies and optimize operating parameters...” SCIENCE

RICK STEVENS

“... move from human-in-the-loop to Al-driven

JEFF NICHOLS

design, discovery, and evaluation also manifests ARTHUR BARNEY MACCABE |
across the design of scientific workflows,
optimization of large-scale simulation codes, and
operation of next generation instruments.”

- Excerpts from the

Executive Summary

&
SDENEREY OEneRGY et

e 2
Jefferson Lab



Definitions

Automated system is a sequence of instructions that executes a repeated set

of processes.

Intelligent automated system is a sequence of processes which includes
components of artificial intelligence and machine learning to improve the

overall outcome.

Autonomous system is a sequence of processes dictated by an artificial

intelligence.

e SAE defines levels of
autonomous systems

e Strict requirements are
put in place to avoid
catastrophic results

SOCIETY OF AUTOMOTIVE ENGINEERS (SAE) AUTOMATION LEVELS

Driver Partial Conditional
Automation Assistance Automation Automation

Zero autonomy; the Vehicle is controlled by Vehicle has combined
driver performs all
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Data-driven automated workflows

o Automating a workflow is a critical component towards
autonomous workflows

e Intrinsic value:

o Increase efficiency, reduce tedious and laborious tasks, avoid
mistakes, etc.

« However, there is nothing “intelligent” about it




Intelligent automated workflows

Introducing an Al/ML component to improve automation workflow
Requires a human-in-the-loop or rules to determine the appropriate

action(s) to take
Very well aligned with the current Scientific User Facilities Al/ML projects
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Autonomous control workflows

e Leverage Al/ML components to steer workflow

o No longer requires a human-in-the-loop or prescriptive rules,

however, you might need multiple models

Control
actions
Provide new actions

for the system to
perform

Al-based policy
model

Continuous training/validating
policy model

Data generation

Simulation and/or sensor data
Initial state or updated state based on
new actions

Data processing

Data cleaning, re-structuring, etc.

ML-based augmented
state representation
(optional)

Enhance the state space
representation using ML encoding,
e.g. anomaly detection input, domain-
aware models, etc.)

ford,
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Optimizing the atomic inter-mixing properties

Problem definition:
Determine the optimal atomic inter-mixing between two = _// Yyl
materials to maximize interfacial thermal conductivity

1. What is the optimal intermixing fraction?

2. What is the optimal thickness of the intermixing

region?
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Bayesian Optimization Workflow

Acquisition
Function

Data Generation 066

Initial Random Sampling
Based on acquisition
function

Using quantile-based
adaptive sampling

Optimization
Process

0.04

0.02

0.66

0.33

Model Fitting

Gaussian Process Regressor
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Scaling Bayesian Optimization on High Performance
Computing system

o To accelerate the data generation we developed a MPI-
based framework

e We created a single Bayesian Optimization agent that | il 1
maps the action-reward for all simulations —

e We created an OpenAl gym environment as a wrapper Q
around the LAMMPS and the post simulation analysis AGENT ENVIRONMENT

e A production job split the MPI communications between 1t |
the BO agent and each LAMMPS environment STATE, REWARD

Bayesian Optimization Agent




Quantile-based adaptive sampling

Algorithm 1: Quantile-based adaptive sampling jH
Pn

Initialize replay memory (D) and action space (A); HHiH

Initialize the quantile threshold value (Q) and decay rate (e); Lmn

o
o0

1
——

for trial = 1,T do

if t>m then

Perform a gaussian process fit on D;

.

(=]
=
2
o

Calculate upper confidence bounds (UCB) using full action space;

Calculate the UCB quantiles;

o
»
=
=
-

Update A based on UCB quantiles satistying Q;

end

Mixinng fraction

Select random action a from A;

=
N
=
g

Execute a on environment and calculate the reward (r);

Store transistion (a,r) in D;

Update the Q = Q x ¢; 0.0

1 2 3 4 5 6
Mixing width

end

* Optimization improved the desired characteristics by nearly
50% relative to the pristine interface!
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Example of an autonomous control workflow for FNAL
Booster control policy

Problem definition:

Reduce beam losses in the FNAL Booster by developing a Machine
Learning (ML) model that provides an optimal set of actions for
accelerator controls

FNAL Accelerator Complex:

MiniBoone  NuMI
(8 GeV) (120 GeV)

%S $
i A
TeV extraction
/i=Alline collider aborts
<

BO"
CDF detector

Main Injector
(150 GeV)

Recycler
(8 GeV)

p abort ‘\\\p‘

Tevatron
(1TeV)
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DO detector
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Courtesy: Christian Herwig




The Need for Improving Requlation

sBending
Magnet

Observed 8T /T for min and max currents: ~103 each

® Spread in B-field degrades beam
guality and contributes to losses

Current

e Focusing on min for now:
B_VIMIN = Setting to achieve
B:VIMIN = Prescribed remedy from
PID regulator circuit
B:IMINER = Error discrepancy

e Policy model is focused on controlling

the regulator to reduce the error

v

Time
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Proof of Concept Workflow

Historical Digital Reinforcement Z‘;’&ce};
Data Twin Learning (baseline)

Transfer Learning

FPGA & Reinf ¢ Calibrated
Online efnforcemen Policy
Learning Model
GPU o

Jef ff;gon Lab



Machine learning-based “digital twin”

Scope and usage for digital twin:
® Provide accurate predictions of future time for key variables to be used by the
reinforcement learning framework

Dataset provided:
® Historical temporal information from key variables was available based on subject
matter expert input
e (Caution:
o Data did not include detailed history on commissioning, maintenance, etc.
o Should conduct a full data inventory assessment

e 2
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Digital Twin: Multivariate Stacked LSTM

Dat
Data ot Al/ML Robustness
Preparation Results
Sources Tools Applications Tools
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Autonomous System using Reinforcement Learning

“Reinforcement Learning is learning what to do — how to map situations to
actions—so as to maximize a numerical reward signal. The learner is not told
which actions to take, but instead must discover which actions yield the most
reward by trying them.” - Barto & Sutton

Key concepts to Reinforcement Learning:
. Agent (controller — policy and sampling) ACTION
. Action (control signal) ‘ J_
. Environment (controlled system) B 9%
. State (representation of environment) Q
. Reward (numerical consequence of action) AGENT ENVIRONMENT
|

e Sequence of experience and agent forms trajectory: 4
Example RL Trace: (So, Ag, Ro), ( Sy, Ay, Ry), .. STATE, REWARD

Jef ffggon Lab



Deep Q-Networks Reinforcement Learning Algorithm

DQN uses a deep neural network to ACTION
estimate the value of taking a specific
action at a certain state, also called the
state-action value or Q-value.

| -

AGENT ENVIRONMENT
The DQN agent, once trained properly, / 4 |
suggests the action with the highest Q- STATE, REWARD
value as its policy, and maximizes the total
reward over the episode. . _
; g
Five discrete actions were defined as 2 E
. o >
possible control changes to the regulator. o S
>
w Ne——/

2
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Reinforcement Learning FNAL Booster Workflow

The optimization was formulated as an episodic problem:
e An episode is composed of 50 sequential steps
e After each episode the environment was reset to the same initial state
e A batch size of 32 experiences were randomly sampled to train the active
policy model
e A e-greedy method was used to control the level of
exploration/exploitation

Initial Policy
State (Random, NN)

~2X
improvement

Environment S Target State

Episodes

c 2
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In summary

o DOE is making investments in Al/ML

e There are a lot of exciting opportunities to develop methods to
accelerate science using Al/ML

e My current research ties into all components of the workflow

Control actions Data generation
- Chemistry/material data
- Accelerator data

- Experimental data

- Sensor data

- Scaling learning algorithms and
workflows
- RL algorithm development

Data processing

- Several common tools for all
applications

Al-based policy model

- Scaling learning algorithms and
workflows
- RL algorithm development

ML-based augmented state
representation (optional)

@ - Anomaly/prognostication and control
- Object identification
- Molecular descriptors via domain aware ML

Jefferson Lab



Malachi Schram, Ph.D.
Department of Data Science
Thomas Jefferson National Accelerator Facility

schram@)jlab.org

* Next session we will go over some hands-on examples

 New data science position at JLab:

https://careers.peopleclick.com/careerscp/client jeffersonlab/ext

ernal/jobDetails.do?functionName=getJobDetail&jobPostld=191

O&localeCode=en-us
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https://urldefense.proofpoint.com/v2/url?u=https-3A__nam11.safelinks.protection.outlook.com_-3Furl-3Dhttps-253A-252F-252Fcareers.peopleclick.com-252Fcareerscp-252Fclient-5Fjeffersonlab-252Fexternal-252FjobDetails.do-253FfunctionName-253DgetJobDetail-2526jobPostId-253D1910-2526localeCode-253Den-2Dus-26data-3D04-257C01-257Cmukka-2540cs.odu.edu-257C80085ee7007e4db1983d08d916220dd4-257C48bf86e811a24b8a8cb368d8be2227f3-257C0-257C0-257C637565157788530180-257CUnknown-257CTWFpbGZsb3d8eyJWIjoiMC4wLjAwMDAiLCJQIjoiV2luMzIiLCJBTiI6Ik1haWwiLCJXVCI6Mn0-253D-257C1000-26sdata-3DHbWUUibLJTYx7-252BjFCWtIUw69x2ny-252BaqEh6hRgTf598c-253D-26reserved-3D0&d=DwMFAg&c=CJqEzB1piLOyyvZjb8YUQw&r=iNpADOBxtB7GcbDkLQ4Kiw&m=Uz7ZmK7ISXfu09b5vHvJLFZw5fXB796Feg8EV-RteJA&s=w9fpnTYqTnk0KqgOoRLYV3DzC50OLb2JHYoHHe1BU6Y&e=

