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Goal of this talk

Provide a high level overview of some key concepts

— Data science and machine learning are massive
research areas and there is no way to cover a fraction
of these topics in a few lectures

Provide some resources to get you started
— Python centric ... sorry

Cover some terminology
Hopefully get you excited ©
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What is Data Science?

* Interdisciplinary field that leverages computer science, mathematics, and
domain expertise to extract knowledge and insights from data
e Collaborative effort built on teams of experts
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Computing Resources

» Alot of data science can be done on a modern
laptop
— Data preprocessing and some visualization

— A large number of machine learning algorithms
can efficiently run on your laptop

— Deep learning will usually require bigger
computing machines
« Developing a workflow that is portable:
— Containers (https://www.docker.com/)
— Singularity (https://sylabs.io)
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https://www.docker.com/
https://sylabs.io/

Computing Resources

* There are some great tools to quickly test ideas and develop
prototypes, such as:

— Jupyter notebooks (https://jupyter.org/)
— Google collaboration: (https://colab.research.google.com)

* For some studies, the data will be very large

and the model with require some machines
with GPU.

— Regional HPC centers

— Cloud resources

—DOE LCF INCITE Proposal I
(https://www.doeleadershipcomputing.org/) I

—DOE LFC ASCR Leadership Computing
Challenge

— DOE LFC Director’s Discretion
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An example of a data science pipeline

« What questions are we trying to answer with the data?
« Do we have the right data?
« What do we know about the data?

« Can we learn something from the data before using machine
learning (ML) techniques?

DEIE! ML Training
Data Source : .
Preparation Applications Tools
e  Real or synthetic e Data cleaning e Classification e Cross-validation e  Predictions
e Quality e Data restructuring e  Regression e HPO e Confidence Level
e Dimensionality e  Correlations e  Clustering e  Explainability
e Format e Dynamics e  Feature extraction
e Density e  Visualization
e Size
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Data Source

How was the data collected and labeled?
— Real world data is messy!
— It will have missing/noisy data that you will need to account for.

How was it curated?
— Data curation is the organization and integration of data collected from various sources.
— Do the various sources of data need to be temporally aligned?

What are the data formats for your study?

— Images (cats and dogs), temporal (time series weather data), categorical (ex: labels A-Z),
ordinal (ex: ranking between 1-5)

What is the dimensionality of the data sources?
— High dimensional (ex: images)
— Low dimensional (ex: single variable sensor)

How many samples do you have?
— Large number of samples (>10k): Google images or large time series data
— Limited: A few experimental measurements and/or simulation samples

Does the data capture the dynamics (physics) of interest or are they distinct samples?
What are the input and output features of interest?
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Finding problems with labeled data (1)
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Finding problems with labeled data (2)
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Some useful Python data packages

Numpy (https://numpy.org/):

— Allibrary that supports large multi-dimensional arrays and matrices,
along with a large collection of high-level mathematical functions to
operate on these arrays.

Pandas (https://pandas.pydata.org/):

— A fast, powerful, flexible, and easy to use open source data
analysis and manipulation tool.

Dask (https://dask.org/):

— Provides advanced parallelism for analytics, enabling performance
at scale for the tools you love (hnumpy and pandas)

Scikit-image (https://scikit-image.org/):
— A collection of algorithms for image processing

Data Science (1) 11 Jefferson Lab
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https://scikit-image.org/

Some useful visualization packages

« Matplotlib (https://matplotlib.org/):

— A comprehensive library for creating static, animated, and
interactive visualizations in Python.

« Seaborn (https://seaborn.pydata.org/):

— Seaborn is another data visualization library based on Matplotlib. It
provides a high-level interface for drawing attractive and
informative statistical graphics.

« Bokeh (https://bokeh.org/):

— Bokeh is used for creating interactive visualizations for modern
web browsers.

Data Science (1) 12 Jefferson Lab


https://matplotlib.org/
https://seaborn.pydata.org/
https://bokeh.org/

Data preparation for ML

* Normalizing your data:

— The purpose of normalizing your data is to provide the data with a common
scale. This is particularly important when dealing with multiple input
variables as it will effect the relative contribution from each variable when
calculating the cost function.

» Reformatting your data:

— You will need to frequently reformat your data in order to satisfy the input
requirements of your model architecture.

— As an example, a time series model will typically require the full trace to be
restructured into smaller sequential traces with a defined look-back and
look-forward setup.

« Data consideration for multi-modal models:

— In some situations you will want to combine different input data types
(video, sense traces, etc.) into a hybrid predictive model. You will need to
resample the data to ensure that the data sources are temporally aligned
and normalized to simplify merging the combined cost functions.
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Machine Learning Applications: Building a ML model

« What do we want from our models: nature
— Provides a transformation between inputand X P =Y

output data
— It should be generalizable L_)@@j

* Does the model apply to an orthogonal
dataset?

» Does the model capture the fundamental
transformation?

— Explainable
— Stability and guarantees

arXiv:1512.04150

(a) without skip connections (b) with skip connections

Figure 1: The loss surfaces of ResNet-56 with/without skip connections. The proposed filter
normalization scheme is used to enable comparisons of sharpness/flatness between the two figures. /7
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Machine Learning Applications: Categories

Meaningful
Compression

Structure Image

i . I Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

isualistai . Classification Diagnostics
Visualistaion Reduction Elicitation Detection 8

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
*
M ac h I n e Population

Growth
Prediction

Recommender Unsupervised SuperV|Sed

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

Segmentation L e a r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Data Type: :
L: Labeled Reinforcement
U: Unlabeled Learning

D: Discrete Robot Navigation Skill Acquisition

C: Continuous

Learning Tasks
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Machine Learning Applications: Packages

The following are a few popular packages used to develop ML
models:

« Sklearn (https://scikit-learn.orq):
— Simple and efficient tools for predictive data analysis

—Includes a large variation on machine learning models and
pre-processing techniques

« Keras/Tensorflow (https://www.tensorflow.org/):

— A popular open source machine learning platform
developed by Google

« Pytorch (https://pytorch.org/):
— Another popular open source machine learning platform
— Provides a number of extensions
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Machine Learning Applications: Example of Algorithms

« Supervised:
— Gaussian processes
— Support Vector Machine
— Neural Networks
—Random Forest

* Unsupervised:
— K-mean clustering
— Principal component analysis (dimension reduction)
— Auto-encoders (dimension reduction)
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Training Tools: Cross-validation

* There are a few common techniques used to prepare the available datasets for
training and validating ML models.
» The easiest method is to split your data as follows:
— Training data (80%) of which 20% of it is used for validation

» Validation samples are used to evaluate the performance and any
potential overfitting

— The remaining 20% of the data is used to test the model
» Creating these orthogonal data samples is an integral component of validating
your model.
» A more advanced technique is K-fold cross-validation.
— Randomly shuffle k-groups from the data to create training and testing
samples
» Be careful to understand if you are interpolating or extrapolating.

— Some systems are non-stationary and the historical data used for training
the model might not match the current or future system condition

« Building a physics based model generally provides better prediction
and guarantees that the prediction is accurate
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Training Tools: Model and hyper-parameter optimization

 When developing ML models there are inevitably several parameters
that are configurable and can be used to optimize the model.

« For example, you can change the:
—learning rate
—number of layers
—dropout rate
—kernel
—loss function
—etc.

* There are several packages available to explore the large parameter
space. For example:

—MLFlow (https://mlflow.org/):
 Platform to manage the ML lifecycle which includes HPO

— Keras Tuner (https://www.tensorflow.org/tutorials/keras/keras_tuner):
 Library that helps optimize hyperparameters for TensorFlow models

2
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https://mlflow.org/
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Malachi Schram, Ph.D.
Department of Data Science
Thomas Jefferson National Accelerator Facility

schram@)jlab.org

* Upcoming Computing Trends in Nuclear Physics Talks:
- Data Science 2-3 (Malachi Schram)
« Examples of machine learning models:
- Forecasting, few-shot learning, hybrid models

« Reinforcement learning session

 New data science position at JLab:

https://careers.peopleclick.com/careerscp/client jeffersonlab/ext
ernal/jobDetails.do?functionName=getJobDetail&jobPostld=191

O&localeCode=en-us
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