# **HUGS: Introduction to QCD**

- Lec. 1: Fundamentals of QCD
- Lec. 2: Matching observed hadrons to quarks and gluons
- Lec. 3: QCD for cross sections with identified hadrons
- Lec. 4: QCD for cross sections with polarized beam(s)

HUGS 2020 was canceled due to COVID-19 HUGS 2021 will be the first virtual school

Jianwei Qiu Theory Center Jefferson Lab









# QCD is everywhere in our universe



- How to understand the emergence and properties of nucleon and nuclei (elements of the periodic table) in terms of elements of the modern periodic table?
- $\circ~$  How does the glue bind us all?
- Facilities CEBAF, EIC, ...

Nuclear Femtography Search for answers to these questions at a Fermi scale! Jefferson Lab

### Cross sections with identified hadron(s) are non-perturbative!

### Hadronic scale ~ 1/fm ~ 200 MeV is not a perturbative scale

Follow a two-step approach:

1) Purely infrared safe quantities

2) Observables with identified hadron(s)



### Fully inclusive, without any identified hadron!

$$\sigma_{e^+e^- \rightarrow \text{hadrons}}^{\text{total}} = \sigma_{e^+e^- \rightarrow \text{partons}}^{\text{total}}$$

### The simplest observable in QCD



# e<sup>+</sup>e<sup>-</sup> → hadrons inclusive cross sections

#### □ e<sup>+</sup>e<sup>-</sup> → hadron total cross section – not a specific hadron!



If there is no quantum interference between partons and hadrons,

$$\sigma_{e^+e^- \to \text{hadrons}}^{\text{tot}} \propto \sum_n P_{e^+e^- \to n} = \sum_n \sum_m P_{e^+e^- \to m} P_{m \to n} = \sum_m P_{e^+e^- \to m} \sum_n P_{m \to n} = 1$$

$$\sigma_{e^+e^- \to \text{partons}}^{\text{tot}} \propto \sum_m P_{e^+e^- \to m}$$

$$\sigma_{e^+e^- \to \text{hadrons}}^{\text{tot}} = \sigma_{e^+e^- \to \text{partons}}^{\text{tot}}$$
Finite in perturbation theory – KLN theorem

#### $\Box$ e<sup>+</sup>e<sup>-</sup> $\rightarrow$ parton total cross section:

4

$$\sigma_{e^+e^- \to \text{partons}}^{\text{tot}}(s=Q^2) = \sum_n \sigma^{(n)}(Q^2,\mu^2) \left(\frac{\alpha_s(\mu^2)}{\pi}\right)^n$$

Calculable in pQCD Jefferson Lab

# Infrared safety of e<sup>+</sup>e<sup>-</sup> total cross sections

### Optical theorem:



#### Time-like vacuum polarization:

$$\sum_{\vec{Q}}^{\nu} \bigvee_{\vec{Q}} = \left( Q^{\mu} Q^{\nu} - Q^2 g^{\mu\nu} \right) \Pi(Q^2)$$

IR safety of  $\sigma_{e^+e^- 
ightarrow partons}^{
m tot} =$  IR safety of  $\Pi(Q^2)$  with  $Q^2 > 0$ 

# $\Box$ IR safety of $\Pi(Q^2)$ :

#### If there were pinched poles in $\Pi(Q^2)$ , $\diamond$ real partons moving away from each other $\diamond$ cannot be back to form the virtual photon again! **Rest frame of the virtual** photon



5

### Lowest order (LO) perturbative calculation

**Lowest order Feynman diagram:** 

□ Invariant amplitude square:

$$|\bar{M}_{e^+e^- \to Q\bar{Q}}|^2 = e^4 e_Q^2 N_c \frac{1}{s^2} \frac{1}{2^2} \operatorname{Tr} \Big[ \gamma \cdot p_2 \gamma^{\mu} \gamma \cdot p_1 \gamma^{\nu} \Big] \\ \times \operatorname{Tr} \Big[ \Big( \gamma \cdot k_1 + m_Q \Big) \gamma_{\mu} \Big( \gamma \cdot k_2 - m_Q \Big) \gamma_{\nu} \Big] \\ = e^4 e_Q^2 N_c \frac{2}{s^2} \Big[ (m_Q^2 - t)^2 + (m_Q^2 - u)^2 + 2m_Q^2 s \Big]$$



$$s = (p_1 + p_2)^2$$
  

$$t = (p_1 - k_1)^2$$
  

$$u = (p_2 - k_1)^2$$

#### Lowest order cross section:

$$\frac{d\sigma_{e^+e^- \to Q\bar{Q}}}{dt} = \frac{1}{16\pi s^2} |\bar{M}_{e^+e^- \to Q\bar{Q}}|^2 \quad \text{where } s = Q^2 \quad \text{Threshold constraint}$$

$$\sigma_2^{(0)} = \sum_Q \sigma_{e^+e^- \to Q\bar{Q}} = \sum_Q e_Q^2 N_c \frac{4\pi \alpha_{em}^2}{3s} \left[ 1 + \frac{2m_Q^2}{s} \right] \sqrt{1 - \frac{4m_Q^2}{s}}$$
One of the best tests for the number of colors

# Next-to-leading order (NLO) contribution

#### **Real Feynman diagram:**





IR as  $x3 \rightarrow 0$ 

#### Contribution to the cross section:

$$\frac{1}{\sigma_0} \frac{d\sigma_{e^+e^- \to Q\bar{Q}g}}{dx_1 dx_2} = \frac{\alpha_s}{2\pi} C_F \frac{x_1^2 + x_2^2}{(1 - x_1)(1 - x_2)}$$
 CO as  $\theta_{13} \to 0$   
 $\theta_{23} \to 0$ 

### Divergent as $x_i \rightarrow 1$ Need the virtual contribution and a regulator!



## How does dimensional regularization work?





# **Dimensional regularization for both IR and CO**

#### □ NLO with a dimensional regulator:

$$\Rightarrow \text{ Real:} \quad \sigma_{3,\varepsilon}^{(1)} = \sigma_{2,\varepsilon}^{(0)} \frac{4}{3} \left(\frac{\alpha_s}{\pi}\right) \left(\frac{4\pi\mu^2}{Q^2}\right)^{\varepsilon} \left[\frac{\Gamma(1-\varepsilon)^2}{\Gamma(1-3\varepsilon)}\right] \left[\frac{1}{\varepsilon^2} + \frac{3}{2\varepsilon} + \frac{19}{4}\right]$$

 $\diamond$  Virtual:

$$\sigma_{2,\varepsilon}^{(1)} = \sigma_{2,\varepsilon}^{(0)} \frac{4}{3} \left(\frac{\alpha_s}{\pi}\right) \left(\frac{4\pi\mu^2}{Q^2}\right)^{\varepsilon} \left[\frac{\Gamma(1-\varepsilon)^2 \Gamma(1+\varepsilon)}{\Gamma(1-2\varepsilon)}\right] \left[-\frac{1}{\varepsilon^2} - \frac{3}{2\varepsilon} + \frac{\pi^2}{2} - 4\right]$$

 $\diamond$  NLO:

$$\sigma_{3,\varepsilon}^{(1)} + \sigma_{2,\varepsilon}^{(1)} = \sigma_2^{(0)} \left[ \frac{\alpha_s}{\pi} + O(\varepsilon) \right]$$

**No ε dependence!** 

$$\Rightarrow \text{ Total:} \quad \sigma^{\text{tot}} = \sigma_2^{(0)} + \sigma_{3,\varepsilon}^{(1)} + \sigma_{2,\varepsilon}^{(1)} + O\left(\alpha_s^2\right) = \sigma_2^{(0)} \left[1 + \frac{\alpha_s}{\pi}\right] + O\left(\alpha_s^2\right)$$

σ<sup>tot</sup> is Infrared Safe!

 $\sigma^{tot}$  is independent of the choice of IR and CO regularization

Go beyond the inclusive total cross section?



### Hadronic cross section in e+e- collision

#### Normalized hadronic cross section:



#### No identified hadron, but, with phase space constraints

$$\sigma_{e^+e^- \to \text{hadrons}}^{\text{Jets}} = \sigma_{e^+e^- \to \text{partons}}^{\text{Jets}}$$

#### Jets – "trace" or "footprint" of partons

#### **Thrust distribution in e<sup>+</sup>e<sup>-</sup> collisions**

#### etc.



### Jets – trace of partons

Jets – "total" cross-section with a limited phase-space

Not any specific hadron!

- Q: will IR cancellation be completed?
  - Leading partons are moving away from each other
  - ◇ Soft gluon interactions should not change the direction of an energetic parton → a "jet"
     – "trace" of a parton
- Many Jet algorithms



# Infrared safety for restricted cross sections

#### **□** For any observable with a phase space constraint, Γ,

$$d\sigma(\Gamma) = \frac{1}{2!} \int d\Omega_2 \frac{d\sigma^{(2)}}{d\Omega_2} \Gamma_2(k_1, k_2)$$
  
+ 
$$\frac{1}{3!} \int d\Omega_3 \frac{d\sigma^{(3)}}{d\Omega_3} \Gamma_3(k_1, k_2, k_3)$$
  
+ 
$$\dots$$
  
+ 
$$\frac{1}{n!} \int d\Omega_n \frac{d\sigma^{(n)}}{d\Omega_n} \Gamma_n(k_1, k_2, \dots, k_n) + \dots$$

Where Γ<sub>n</sub>(k<sub>1</sub>,k<sub>2</sub>,...,k<sub>n</sub>) are constraint functions and invariant under Interchange of n-particles



#### **Conditions for IRS of d** $\sigma$ (Γ):

$$\Gamma_{n+1}\left(k_1,k_2,\ldots,(1-\lambda)k_n^{\mu},\lambda k_n^{\mu}\right) = \Gamma_n\left(k_1,k_2,\ldots,k_n^{\mu}\right) \quad \text{with} \quad 0 \le \lambda \le 1$$

**Physical meaning:** 

Measurement cannot distinguish a state with a zero/collinear momentum parton from a state without this parton – inclusiveness!

Special case:  $\Gamma_n(k_1, k_2, ..., k_n) = 1$  for all  $n \Rightarrow \sigma^{(tot)}$ 



### An early clean two-jet event





# Discovery of a gluon jet





# **Tagged three-jet event from LEP**



## **Two-jet cross section in e+e- collisions**

**Parton-Model = Born term in QCD:** 

$$\sigma_{2\text{Jet}}^{(\text{PM})} = \frac{3}{8} \,\sigma_0 \left( 1 + \cos^2 \theta \right)$$

Two-jet in pQCD:

$$\sigma_{2\text{Jet}}^{(\text{pQCD})} = \frac{3}{8} \sigma_0 \left( 1 + \cos^2 \theta \right) \left( 1 + \sum_{n=1}^{\infty} C_n \left( \frac{\alpha_s}{\pi} \right)^n \right)$$
  
with  $C_n = C_n \left( \delta \right)$ 

□ Sterman-Weinberg jet:

$$\sigma_{2\text{Jet}}^{(\text{pQCD})} = \frac{3}{8} \sigma_0 \left( 1 + \cos^2 \theta \right)$$

$$\mathbf{x} \left[ 1 - \frac{4}{3} \frac{\alpha_s}{\pi} \left( 4\ln(\delta)\ln(\delta') + 3\ln(\delta) + \frac{\pi^2}{3} + \frac{5}{2} \right) \right] \overset{\delta}{\mathbf{E}\sqrt{s = \delta'}} \overset{\mathbf{v}}{\mathbf{Z}\text{-axis}}$$

$$\mathbf{x} \left[ 1 - \frac{4}{3} \frac{\alpha_s}{\pi} \left( 4\ln(\delta)\ln(\delta') + 3\ln(\delta) + \frac{\pi^2}{3} + \frac{5}{2} \right) \right] \overset{\mathbf{v}}{\mathbf{E}\sqrt{s = \delta'}} \overset{\mathbf{v}}{\mathbf{E}\sqrt$$

17  $\sigma_{\text{total}} = \sigma_{2\text{Jet}}$  as  $Q \to \infty$ 



**E**<sub>2</sub>

θ

δ

# **Basics of jet finding algorithms**

#### □ Recombination jet algorithms (almost all e+e- colliders):

Recombination metric:
$$y_{ij} = \frac{M_{ij}^2}{E_{c.m.}^2}$$
 $M_{ij}^2 = 2\min(E_i^2, E_j^2)(1 - \cos \theta_{ij})$  $\diamond$  different algorithm = different choice of  $M_{ij}^2$ :for Durham k\_T $\diamond$  Combine the particle pair  $(i, j)$  with the smallest: $y_{ij}$   $(i, j) \rightarrow k$  $e.g.$  E scheme : $p_k = p_i + p_j$  $\diamond$  iterate until all remaining pairs satisfy: $y_{ij} > y_{cut}$ Cone jet algorithms (CDF, ..., colliders): $\diamond$  Cluster all particles into a cone of half angle  $R$  to form a jet: $\diamond$  Require a minimum visible jet energy: $E_{jet} > \epsilon$ 

Recombination metric:  $d_{ij} =$ 

$$d_{ij} = \min\left(k_{T_i}^{2p}, k_{T_j}^{2p}\right) \frac{\Delta_{ij}^2}{R^2}$$

♦ Classical choices:  $p=1 - k_{\tau}$  algorithm",  $p=-1 - anti-k_{\tau}$ ", ...



# **Thrust distribution**



#### Phase space constraint:

$$\frac{d\sigma_{e^+e^- \to \text{hadrons}}}{dT} \quad \text{with} \quad \Gamma_n \left( p_1^{\mu}, p_2^{\mu}, ..., p_n^{\mu} \right) = \delta \left( T - T_n \left( p_1^{\mu}, p_2^{\mu}, ..., p_n^{\mu} \right) \right)$$
  
  $\diamond \quad \text{Contribution from p=0 particles drops out the sum}$ 

#### Replace two collinear particles by one particle does not change the thrust

and  
$$\begin{aligned} |(1-\lambda)\vec{p}_n\cdot\vec{u}| + |\lambda\vec{p}_n\cdot\vec{u}| &= |\vec{p}_n\cdot\vec{u}| \\ |(1-\lambda)\vec{p}_n| + |\lambda\vec{p}_n| &= |\vec{p}_n| \end{aligned}$$



# The harder question

**Question**:

How to test QCD in a reaction with identified hadron(s)? – to probe the quark-gluon structure of the hadron

**Facts:** 

Hadronic scale ~ 1/fm ~  $\Lambda_{QCD}$  is non-perturbative

Cross section involving identified hadron(s) is not IR safe and is NOT perturbatively calculable!

- Solution Factorization:
  - $\diamond$  Isolate the calculable dynamics of quarks and gluons
  - Connect quarks and gluons to hadrons via non-perturbative but universal distribution functions
    - provide information on the partonic structure of the hadron



# **Observables with ONE identified hadron**

#### **Creation of an identified hadron:**

Not necessary to be dominated by one parton, which is always virtual!

Square" of the diagram with a "unobserved gluon":



- in a "cut-diagram" notation



# **Observables with ONE identified hadron**

### **Non-perturbative!** Creation of an identified hadron: Not necessary to be dominated by one parton, which is always virtual! **On-shell approximation:** – in a "cut-diagram" notation $\sigma_{e^+e^- \to h(p)X} \approx \sum_{\mathbf{r}} \int \frac{d^4k}{(2\pi)^4} \mathcal{H}_{e^+e^- \to f(k)}(Q,k;\sqrt{S}) \,\mathcal{F}_{f(k) \to h(p)X}(k,p;\Lambda_{\text{QCD}}) + \dots$ $\hat{k}^2 = 0 \quad \approx \sum_{f} \int \frac{d^4k}{(2\pi)^4} \mathcal{H}_{e^+e^- \to f(k)}(Q, \hat{k}; \sqrt{S}) \mathcal{F}_{f(k) \to h(p)X}(k, p; \Lambda_{\text{QCD}}) + \mathcal{O}(\frac{\langle k^2 \rangle}{Q^2}) + \dots$ $\approx \sum_{f} \int dz \,\mathcal{H}_{e^+e^- \to f(k)}(Q, \frac{p}{z}; \sqrt{S}) \int \frac{d^4k}{(2\pi)^4} \delta(z - \frac{p \cdot n}{k \cdot n}) \mathcal{F}_{f(k) \to h(p)X}(k, p; \Lambda_{\text{QCD}}) + \dots$ $\approx \sum_{a} \int dz \, \hat{\sigma}_{e^+e^- \to f(k)}(Q, z; \sqrt{S}) \, D_{f(k) \to h(p)X}(z, p; \Lambda_{\text{QCD}}) + \dots$ Hard collision to produce an FF: Probability for the parton to on-shell parton become the observed hadron - Perturbatively calculable! - Non-perturbative, universal! Jefferson Lab 22

# **Observables with ONE identified hadron**



## **Probes for 3D hadron structure**

#### ❑ Single scale hard probe is too "localized":



- $\circ~$  It pins down the particle nature of quarks and gluons
- $\circ$  But, not very sensitive to the detailed structure of hadron ~ fm
- Transverse confined motion:  $k_{\tau} \sim 1/\text{fm} \ll Q$
- Transverse spatial position:  $b_{\tau} \sim \text{fm} >> 1/Q$

□ Need new type of "Hard Probes" – Physical observables with TWO Scales:

$$Q_1 \gg Q_2 \sim 1/R \sim \Lambda_{\rm QCD}$$

- Hard scale:  $Q_1$  To localize the probe particle nature of quarks/gluons
- "Soft" scale:  $Q_2$  could be more sensitive to the hadron structure ~ 1/fm

Hit the hadron "very hard" without breaking it, clean information on the structure!



# "See" hadron's 3D partonic structure?

#### **Two-scale observables are natural in lepton-hadron collisions:**

♦ Semi-inclusive DIS:



SIDIS: Q>>P<sub>T</sub>

#### Parton's confined motion encoded into TMDs



**♦ Exclusive DIS:** 



See lectures by Carlos Munoz Camacho

+ ...

Imaging quarks

DVCS: Q<sup>2</sup> >> |t|

iniuging quurk.

Parton's spatial imaging from Fourier transform of GPDs' t-dependence



### **Observables with identified hadrons – Phenomenology**

#### Need QCD global analyses of all data on factorizable cross sections!

