Longitudinal Spin Transfer to Λ⁰ Hyperons in CLAS12

2/Jun./21, Matthew McEneaney, Duke University

matthew.mceneaney@duke.edu

Research supported by:

Office of Science

Why Lambdas?

U S c

- Similar spin structure to proton
- Constituent Quark Model predicts spin carried by s quark alone: $\Delta q_s^{\Lambda} = 1$ (Denote contribution of quarks of flavor f to Λ spin: $\Delta q_f^{\Lambda} = q_f^{\Lambda +} - q_f^{\Lambda -}$)
- Previous experiments have observed small spin transfer coefficients but are unable to discriminate between models:

HERMES: $\Delta q_u^{\Lambda} = 0.11 \pm 0.10(stat) \pm 0.03(syst)$ NOMAD result: $-P_{\Lambda}^{\nu} = 0.09 \pm 0.06(stat) \pm 0.03(syst)$

A. Airapetian, et al. Physical Review D, 74(7), Oct 2006. NOMAD Collaboration, P. Astier et al., Nucl. Phys. B 588, 3 (2000).

2/Jun./21

Spin Transfer

• Spin transfer to Lambda described by:

$$\frac{dN}{d\Omega_{\rm p}} \propto 1 + \alpha P_b D(y) D_{LL'}^{\Lambda} \cos \theta_{pL'}$$

where $D(y) \simeq \frac{1-(1-y)^2}{1+(1-y)^2}$ is the depolarization factor

• Partial spin transfer from struck quark to Λ : $D_{LL',f}^{\Lambda}(z) = \frac{G_{1,f}^{\Lambda}(z)}{D_{1,f}^{\Lambda}(z)} = \frac{D_{1,f+}^{\Lambda+}(z) - D_{1,f+}^{\Lambda-}(z)}{D_{1,f+}^{\Lambda+}(z) + D_{1,f+}^{\Lambda-}(z)} \simeq \frac{\Delta q_f^{\Lambda}}{q_f^{\Lambda}}$

A. Airapetian, et al. Physical Review D, 74(7), Oct 2006.

• Since there is a strong *u*-quark dominance in e^- DIS $D_{LL'}^{\Lambda}(z) \approx D_{LL',u}^{\Lambda}(z)$

2/Jun./21

Experimental Extraction

• Going back to the angular distribution:

$$\frac{dN}{d\Omega_{\rm p}} \propto 1 + \alpha P_b D(y) D_{LL'}^{\Lambda} \cos \theta_{pL'}$$

Where $\cos \theta_{pL'}$ is the angle between p^+ momentum and Λ spin quantization axis.

- Axis 1: along Λ momentum
- Axis 2: along the virtual photon momentum in Λ rest frame

 \vec{p}_p

 \vec{p}_{π}

θ

Λ

Experimental Extraction

• Maximum likelihood (helicity balance) method allows us to extract on event-by-event basis:

$$D_{LL'}^{\Lambda} = \frac{1}{\alpha \overline{P_b^2}} \cdot \frac{\sum_{i=1}^{N_{\Lambda}} P_{b,i} D(y_i) \cos \theta_{pL'}^i}{\sum_{i=1}^{N_{\Lambda}} D^2(y_i) \cos^2 \theta_{pL'}^i}$$

- No acceptance corrections needed since $\overline{P_b} = 0$ (beam polarization reverses at 30Hz).
- Linear fit method for the $\cos \theta$ distributions requires acceptance correction.

Standard SIDIS cuts: $Q^2 > 1 \& W > 2 \& y < 0.8 \& x_F > 0 \& z < 1$ Also require identified $p^+\pi^-$ and scattered e^-

Crystal Ball Fit Function:

$$CB(M; \alpha, n, \mu, \sigma) = N \cdot \exp\left(-\frac{(m-\mu)^2}{2\sigma^2}\right), \quad \frac{m-\mu}{\sigma} > -\alpha$$
$$= N \cdot A\left(B - \frac{m-\mu}{\sigma}\right)^{-n}, \quad \frac{m-\mu}{\sigma} < -\alpha$$

2/Jun./21

/volatile/clas12/rg-a/production/recon/fall2018/torus+1/pass1/v0/dst/train/skim4/

MC: Comparison with Truth-Matched Signal

MC Λ° Mass

Truth Matching: Require a MC truth Λ in event with $|P_{Rec}^{\Lambda} - P_{MC}^{\Lambda}| < 0.1 GeV$

2/Jun./21

/work/clas12/rg-a/montecarlo/fall2018/torus+1/clasdis/nobg/

MC: Λ Kinematics Correlations

Standard kinematic cuts: $Q^2 > 1 \& W > 2 \& y < 0.8 \& x_F > 0 \& z < 1$ and positive $p^+\pi^-$ PID and scattered e^- (positive PID, $|\chi^2| < 3$, greatest momentum) required.

Truth Matching: Require a MC truth Λ in event with $|P_{Rec}^{\Lambda} - P_{MC}^{\Lambda}| < 0.1 GeV$

2/Jun./21

/work/clas12/rg-a/montecarlo/fall2018/torus+1/clasdis/nobg/

MC: $\cos \theta$ Distributions

MC: $\cos \theta$ Resolution in Signal Region

/work/clas12/rg-a/montecarlo/fall2018/torus+1/clasdis/nobg/

REC *cosθ* Distributions

Standard kinematic cuts: $Q^2 > 1 \& W > 2 \& y < 0.8 \& x_F > 0 \& z < 1$

2/Jun./21

/volatile/clas12/rg-a/production/recon/fall2018/torus+1/pass1/v0/dst/train/skim4/

Fit
$$cos\theta_1$$
 (acceptance corrected) $P_{\Lambda} = \frac{1}{\alpha} \frac{Slope}{C}$

2/Jun./21

Helicity Balance vs. Invariant Mass

Note: errors are solely statistical No BG Correction

2/Jun./21

Systematic Uncertainties

- Uncertainties from fit errors and incorrect particle PID were minimal (<0.001).
- Spin transfer in sidebands is also fairly small:

Preliminary Helicity Balance

$\overline{\cos \theta_{pL'}}$ along $\vec{p_{\Lambda}}$	$\cos heta_{pL'} ext{ along } ec{p_{\gamma}}$
-0.00141 ± 0.01293	0.00113 ± 0.01387
-0.00185 ± 0.03183	-0.00810 ± 0.03535

• Results from linear fit method are consistent within uncertainties, but require better statistics.

Systematic Uncertainties: Method Pulls

Pulls between methods calculated assuming the results from each are completely correlated: pull = $\Delta D_{LL'} / \sqrt{|\sigma_A^2 - \sigma_B^2|}$

Summary

• Preliminary averaged $D_{LL'}$ measurements:

Preliminary Helicity Balance

$\cos heta_{pL'}$ along $ec{p_{\Lambda}}$	$\cos heta_{pL'}$ along $ec{p_{\gamma}}$
0.0618 ± 0.0963	0.118 ± 0.107

- In general, consistent with HERMES $(D_{LL'} = 0.11 \pm 0.10(stat) \pm 0.03(syst))$ and NOMAD $(-P_{\Lambda}^{\nu} = 0.09 \pm 0.06 (stat) \pm 0.03 (syst))$
- Current/future work: Deep Sets Networks and Graph Neural Networks for Λ event identification, such as in <u>arXiv:1810.05165v2</u> and <u>arXiv:1902.08570v3</u>

2/Jun./21

Thank you!

Research supported by:

Office of Science

MC: $\cos \theta$ Resolution in Lower Sideband

 $\Delta \cos(\theta)$ along $\overrightarrow{\mathsf{P}}_{,*}$ _d_ct2_ct2MC_M_080_100 Counts 35 Entries 794 Mean -0.1795 Std Dev 0.2787 30 25 20 15 10 5 0 -0.2 0.2 0.6 -0.8 -0.4 0 0.4 0.8 -0.6 $\Delta \cos(\theta)$

Standard kinematic cuts: $Q^2 > 1 \& W > 2 \& y < 0.8 \& x_F > 0 \& z < 1$ and positive $p^+\pi^-$ PID and scattered e^- (positive PID, $|\chi^2| < 3$, greatest momentum) required.

/work/clas12/rg-a/montecarlo/fall2018/torus+1/clasdis/nobg/

Truth Matching: Require a MC truth Λ in event with $|P_{Rec}^{\Lambda} - P_{MC}^{\Lambda}| < 0.1 GeV$

MC: $\cos \theta$ Resolution in Signal Region

 $Q^2 > 1 \& W > 2 \& y < 0.8 \& x_F > 0 \& z < 1$ and positive $p^+\pi^-$ PID and scattered e^- (positive PID, $|\chi^2| < 3$, greatest momentum) required.

/work/clas12/rg-a/montecarlo/fall2018/torus+1/clasdis/nobg/

Truth Matching: Require a MC truth Λ in event with $|P_{Rec}^{\Lambda} - P_{MC}^{\Lambda}| < 0.1 GeV$

MC: $\cos \theta$ Resolution in Upper Sideband

Standard kinematic cuts: $Q^2 > 1 \& W > 2 \& y < 0.8 \& x_F > 0 \& z < 1$ and positive $p^+\pi^-$ PID and scattered e^- (positive PID, $|\chi^2| < 3$, greatest momentum) required.

/work/clas12/rg-a/montecarlo/fall2018/torus+1/clasdis/nobg/

 $\Delta \cos(\theta)$ along $\overrightarrow{\mathsf{P}}_{,*}$ _d_ct2_ct2MC_M_150_180 Counts Entries 1168 0.2525 50 Mean Std Dev 0.2445 40 30 20 10 0.2 0.6 -0.8 -0.4 -0.2 0.4 0.8 -0.60 $\Delta \cos(\theta)$

Truth Matching: Require a MC truth Λ in event with $|P_{Rec}^{\Lambda} - P_{MC}^{\Lambda}| < 0.1 GeV$

MC: Asymmetry Injection Helicity Balance

Weight $cos\theta_{REC}$ by $1 + \alpha D(y)P_b D_{ll,injected} cos\theta_{MC}$ with $D_{ll,injected} = 0.1$, averaged result is $D_{ll} = 0.107 \pm 0.078$

Truth Matching: Require a MC truth Λ in event with $|P_{Rec}^{\Lambda} - P_{MC}^{\Lambda}| < 0.1 GeV$

2/Jun./21

/work/clas12/rg-a/montecarlo/fall2018/torus+1/clasdis/nobg/

Method Comparison

Method Comparison with HERMES

VS. *Z*

Linear Fit: Comparison with HERMES

Binning

Standard kinematic cuts: $Q^2 > 1 \& W > 2 \& y < 0.8 \& x_F > 0 \& z < 1$

HERMES Results

arXiv:hep-ex/0607004.