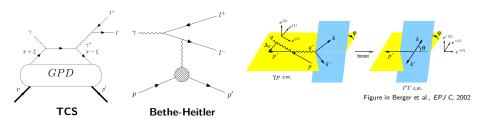
Timelike Compton Scattering with CLAS12 at Jefferson Lab

CLAS Collaboration meeting - 2nd June 2021


Pierre Chatagnon INFN Genova (CMS group)

chatagnon@ipno.in2p3.fr/pchatagnon@ge.infn.it

Motivations

Timelike Compton Scattering

- BH cross section only depends on electromagnetic FFs
- Unpolarized interference cross section

$$\frac{d^4\sigma_{\mathit{INT}}}{dQ'^2dtd\Omega} \propto \left[\frac{L_0}{L} \left[\cos(\phi)\frac{1+\cos^2(\theta)}{\sin(\theta)} \right] \frac{\mathrm{Re}\tilde{\textit{M}}^{--}}{\mathrm{Re}\tilde{\textit{M}}^{--}} + \ldots\right]$$

Polarized interference cross section

$$\frac{d^4\sigma_{\mathit{INT}}}{dQ'^2dtd\Omega} = \frac{d^4\sigma_{\mathit{INT}}\mid_{\mathrm{unpol.}}}{dQ'^2dtd\Omega} - \nu \cdot A \frac{L_0}{L} \left[\sin(\phi) \frac{1+\cos^2(\theta)}{\sin(\theta)} \right] \text{Im} \tilde{\mathcal{M}}^{--} + ... \right]$$

$$\rightarrow \tilde{\mathit{M}}^{--} = \frac{2\sqrt{t_0-t}}{\mathit{M}} \frac{1-\xi}{1+\xi} \left[\mathit{F}_1 \frac{\mathcal{H}}{1} - \xi (\mathit{F}_1 + \mathit{F}_2) \tilde{\mathcal{H}} - \frac{t}{4\mathit{M}^2} \mathit{F}_2 \mathcal{E} \right]$$

Both $Im\mathcal{H}$ and $Re\mathcal{H}$ can be accessed in TCS

Motivations to measure TCS

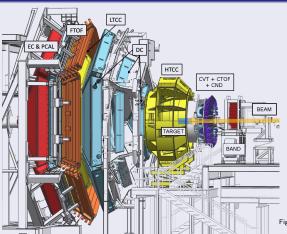
Test of universality of GPDs

0

- TCS is parametrized by GPDs
- Comparison between DVCS and TCS results allows to test the universality of GPDs
- TCS does not involve Distribution Amplitudes unlike Deeply Virtual Meson Production → direct comparison between DVCS and TCS

Real part of CFFs and nucleon D-term

- As for DVCS, TCS unpolarized cross section is sensitive to $Re\mathcal{H}$, which is still not well constrained by existing data.
- The CFFs dispersion relation at leading order and leading twist :


$$\operatorname{Re}\mathcal{H}(\xi,t) = \mathcal{P}\int_{-1}^{1} dx \left(\frac{1}{\xi-x} - \frac{1}{\xi+x}\right) \operatorname{Im}\mathcal{H}(\xi,t) + D(t)$$

D(t) can be related to the mechanical properties of the nucleon.

Review in Polyakov, Schweitzer, International Journal of Modern Physics A, 2018

Experimental setup

CLAS12

Forward Detector (6 sectors)

- Torus magnet
 - Drift Chambers
- Forward Time-of-Flight
- Calorimeters (EC and PCAL)
- Cherenkov counters

Central Detector

- Solenoid magnet
- Central Vertex Tracker (Silicon and micromegas)
- Central Time-of-Flight
- Central Neutron Detector

Figure in Burkert et al., $\emph{NIM}~\emph{A},~2020$

Data set used in this work

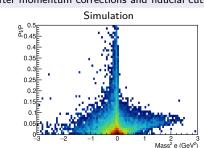
- Fall 2018 run period
- \bullet **LH₂** target / **10.6 GeV** beam / RG-A
- Inbending torus magnetic field
- ullet Accumulated charge: ~ 150 mC ($\sim 200~{
 m fb}^{-1}$)

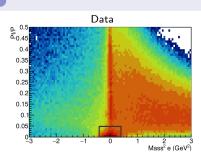
Analysis strategy

Final state selection from PID

$$e p \rightarrow (e')\gamma p \rightarrow (X) e^+e^-p'$$

Exclusivity cuts


$$p_X = p_{beam} + p_{target} - p_{e^+} - p_{e^-} - p_{p'}$$

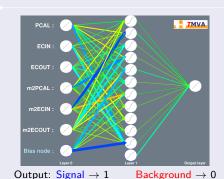

 $|M_X^2| < 0.4 \text{ GeV}^2$

Quasi-real photoproduction $\frac{Pt_X}{P_X} < 0.05$

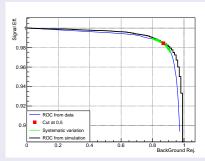
 $\rightarrow Q^2 < 0.1 \text{ GeV}^2$

after momentum corrections and fiducial cuts Here

Definitions

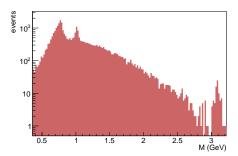

Signal: e^+ identified as e^+ Background: π^+ identified as e^+

Strategy and discriminating variables


Positron: electromagnetic shower

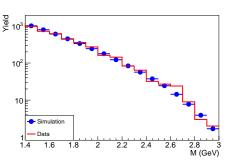
$$SF_{\text{EC Layer}} = \frac{E_{dep}(\text{EC Layer})}{R}$$
 $M_2 = \frac{1}{2}$

Positron: electromagnetic shower Pion: Minimum Ionizing Particle (MIP)
$$SF_{\rm EC\ Layer} = \frac{E_{dep}({\rm EC\ Layer})}{P} \qquad M_2 = \frac{1}{3} \sum_{U,V,W} \frac{\sum_{\rm strip} (x-D)^2 \cdot \ln(E)}{\sum_{\rm strip} \ln(E)} \rightarrow \textbf{6 variables}$$


B/S from 50% to 5%

- Signal in data⇒ Outbending electrons
- Background in data $\Rightarrow ep \rightarrow e\pi^+_{PID=e^+_6/16}(n)$

Data/Simulation comparison


- Vector mesons peaks are visible in data: ω (770 MeV), ρ (782 MeV),
 - Φ (1020 MeV) and J/ψ (3096 MeV)

 Data/BH comparison in the high mass region, no evident high mass vector meson production (ρ (1450 MeV, 1700 MeV))

Phase space of interest

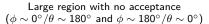
- 1.5 GeV $< M_{e^+e^-} < 3$ GeV
- $0.15 \text{ GeV}^2 < -t < 0.8 \text{ GeV}^2$
- 4 GeV $< E_{\gamma} < 10.6$ GeV.

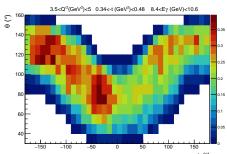
Data/simulation are matching at 15~% level, up to normalization factor

Acceptance

$$Acc_{\mathcal{B}} = \frac{N_{\mathcal{B}}^{REC}}{N_{\mathcal{B}}^{GEN}}$$

$$N_{\mathcal{B}}^{REC} = \sum_{REC \in \mathcal{B}} Eff_{corr} w$$

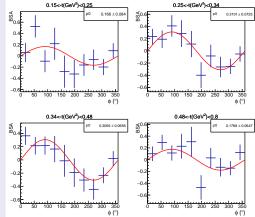

$$N_{\mathcal{B}}^{GEN} = \sum_{GEN \in \mathcal{B}} w$$


Multidimensional binning of the acceptance

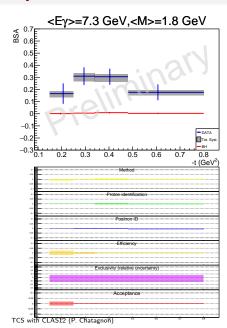
4 bins in -t, 3 bins in E_{γ} and Q'^2 , 10° x 10° bins in the ϕ/θ plane. Bins with $\frac{\Delta Acc}{Acc} > 0.5$ and Acc < 0.05 are discarded (ΔAcc is statistical error).

Efficiency corrections

- Data-driven correction for the proton detection efficiency derived using ep → e'π⁺π⁻(p') reaction
- Efficiency correction from background merging using random trigger events


Observable 1: Photon polarization asymmetry (BSA)

Access to the imaginary part of CFFs


$$BSA = \frac{\sigma^+ - \sigma^-}{\sigma^+ + \sigma^-} = \frac{-\frac{\alpha_{em}^3}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q^f} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_0}{L} \sin \phi}{d\sigma_{BH}} \frac{(1 + \cos^2 \theta)}{\sin(\theta)} \frac{\text{Im} \tilde{\mathcal{M}}^{--}}{\text{Im} \tilde{\mathcal{M}}^{--}}$$

Experimental measurement

- $BSA(-t, E\gamma, M; \phi) = \frac{1}{Pol_{eff}} \frac{N^+ N^-}{N^+ + N^-}$ where $N^{\pm} = \sum_{A=c} \frac{1}{A_{CC}} Pol_{transf}$.
- Pol_{transf} is the transferred polarization from the electron to the photon
- Pol_{eff} is the polarization of the CEBAF electron beam (85%)
- The ϕ -distribution is fitted with a sine function

Systematics

Method

 Calculated from generated BH events, and full-chain simulated events.

Proton

• Apply χ^2 cut for the proton identification

Positron Identification

• Vary the positron ID cut (0.5 \pm 0.3; max. significance region)

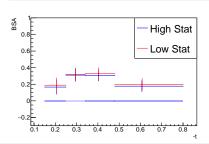
Efficiency

Calculate observable with/without data-driven proton efficiency

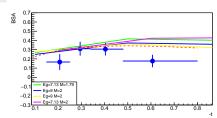
Exclusivity cuts

• Vary the values of the exclusivity cuts: $\mid Pt/P\mid <0.05\pm0.01, \mid M_\chi^2\mid <0.4\pm0.1~{\rm GeV}^2$ Fully integrated relative uncertainty

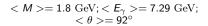

Acceptance

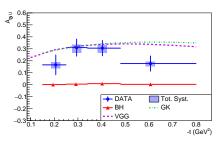

- Calculate observable with acceptance produced using BH-weighted events or unity weights
- Neighboring bins uncertainties are averaged
- Then added in quadrature

Additional systematics checks


Stability of the MVA at low momenta for all leptons

 MC statistic: acceptance calculated with 16M/36M generated events




• Study the stability of the model prediction within the integrated kinematic range

BSA selected results

- First time measurement
- A sizeable asymmetry is measured (above the expected vanishing BSA of BH)
 - \rightarrow signature of TCS
- Theoretical predictions were provided by M. Vanderhaeghen (using the VGG model) and P.Sznajder (using the GK model)
- Size of the asymmetry is well reproduced by VGG and GK models \rightarrow model dependent hints for universality of GPDs

Observable 2: Forward-Backward asymmetry

- Concept explored for J/Ψ production (Gryniuk, Vanderhaeghen, *Phys. Rev. D*, 2016).
- Exploratory studies for TCS performed in my thesis.
- Very first predictions for TCS have been published very recently (Heller, Keil, Vanderhaeghen, Phys. Rev. D. 2021).
- Use the different parity of the TCS and BH amplitudes under the inversion of the leptons directions $k \leftrightarrow k' \iff (\theta, \phi) \leftrightarrow (180^{\circ} - \theta, 180^{\circ} + \phi)$

BH cross section

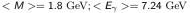
$$\frac{d\sigma_{BH}}{d\Omega^2 dt d\Omega} \propto \frac{1+\cos^2\theta}{\sin^2\theta} \xrightarrow{FB} \frac{d\sigma_{BH}}{d\Omega^2 dt d\Omega}$$

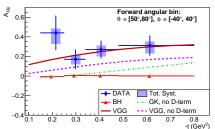
Int. cross section

$$\frac{d\sigma_{BH}}{dQ^2\,dt\,d\Omega} \propto \ \frac{_{1+\cos^2\theta}}{\sin^2\theta} \ \stackrel{FB}{\longrightarrow} \frac{d\sigma_{BH}}{dQ^2\,dt\,d\Omega} \qquad \qquad \frac{d^4\sigma_{INT}}{dQ'^2dtd\Omega} \propto \ \frac{L_0}{L}\cos(\phi)^{\frac{1+\cos^2(\theta)}{\sin(\theta)}} \ \stackrel{FB}{\longrightarrow} -\frac{d\sigma_{INT}}{dQ^2\,dt\,d\Omega}$$

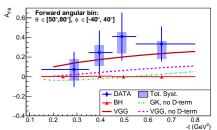
A_{FR} formula

$$A_{FB}(\theta_0, \phi_0) = \frac{d\sigma(\theta_0, \phi_0) - d\sigma(180^\circ - \theta_0, 180^\circ + \phi_0)}{d\sigma(\theta_0, \phi_0) + d\sigma(180^\circ - \theta_0, 180^\circ + \phi_0)} = \frac{-\frac{\alpha_{em}^2}{4\pi s^2} \frac{1}{-t} \frac{m_p}{Q'} \frac{1}{\tau \sqrt{1-\tau}} \frac{L_0}{L} \cos \phi_0 \frac{(1+\cos^2\theta_0)}{\sin(\theta_0)}}{d\sigma_{BH}} \frac{\text{Re}\tilde{\textit{M}}^{--}}{\text{Re}\tilde{\textit{M}}^{--}}$$


- Access to the real part of the CFFs with no integration over angles
- Removes large dependencies on angular acceptance → direct comparison with models
- But smaller phase space → lower statistics


AFR selected results

- A_{FB} measured in two mass regions: $M \in [1.5 \text{ GeV}, 3 \text{ GeV}]$ and $M \in [2 \text{ GeV}, 3 \text{ GeV}]$
- The measured A_{FB} is non-zero: evidence for signal beyond pure BH contribution
- Three model predictions
 - 1 VGG without D-term
 - 2 VGG with D-term


D-term in Pasquini et al., Physics Letters B, 2014

- 3 GK without D-term
- Measured asymmetry is better reproduced by the VGG model including the D-term in both mass bins

$$< M> = 2.25 \text{ GeV}; < E_{\gamma} > = 8.13 \text{ GeV}$$

Documentation and code

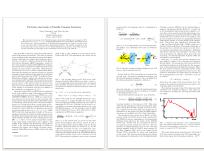
Analysis review

Review #1461061: "Timelike Compton scattering with CLAS12"

 \rightarrow ended Monday 31st of May

We are ready for ad-hoc review! Request sent yesterday

Analysis note


Final version of the analysis note available here

Analysis scripts

(Personal) Github repository containing all the scripts used for the analysis is being set up •here

Conclusions

- TCS observables were measured for the first time
- Sizeable BSA (sensitive to $Im\mathcal{H}$) and A_{FB} (sensitive to $Re\mathcal{H}$) are clear signatures of TCS
- The results obtained allow to draw physical conclusions:
 - the BSA is well reproduced by models that reproduce existing DVCS data
 - \rightarrow hints for universality of GPDs
 - the Forward/Backward asymmetry appears to be better reproduced by model with a D-term
 - → promising path to the measurement of the mechanical properties of the proton
- The analysis is reviewed (final approval this monday) and fully documented
- The article is (90%) ready for ad-hoc review

