OSG Status Report

M. Ungaro, N. Baltzell CLAS Collaboration Meeting June 1, 2021

CLAS12 OSG Images

Both docker and singularity images rely on /cvmfs being mounted to access environment, fields, software

CLAS12 OSG Submissions Workflow

Web Portal on <u>gemc.jlab.org</u> (php, javascript, html)

Configuration	rgb_fall2019	
Magnetic Fields	tor+1.00_sol-1.00 \$	
Generator	clasdis 🖨	
Generator Options	t 15 25	clasdis options
After selecting the generator, check the documentation and paste the needed options above. Notice: do no use the following options as they are automatically passed for you:docker, output file nametrig options.		
Number of Events / Job	10000	
Number of Jobs	2000	
Total Number of Events	20 M	
Background Merging	40nA_10410MeV \$	
	Submit	

Define and upload submission parameters to JLAB MYSQL server

submit.jlab.org

Cronjob on JLAB Submit Node (scosg16)

- Reads submissions pars
- Create Condor scripts
- Create Run scripts
- Fetch LUND files if applicable
- Submit Jobs to OSG
- Modify Submission Status on <u>submit.jlab.org</u>

Additional condor parameters: Offsite Resources "Rank" Offsite Resources minimum requirements

CLAS12 OSG Node Workflow

nodescript.sh is run on the offsite node

At any of these stages, if an error occurs:

- a file cleanup is done
- the job exits with dedicated exit codes

CLAS12 OSG Additional Workflows

Cronjobs on scog16, python backends

idle

hold

osg id

Offsite Dedicated Resources

1 core = 24*365 = 8760 hours / year

OSG Name	Country/ Institution	Number of CPUs	MHours / Year
INFN-T1	Istituto Nazionale di Fisica Nucleare, Italy	400	3.5
UKI- SCOTGRID- GLASGOW	Glasgow University, Scotland	700	6.1
MIT*	Massachusetts Institute of Technology, USA	320	4.4
Upcoming: LAMAR	Lamar University, USA	1-200	16 <u>.</u> 7

Total Dedicated:

1,420 CPUs

(1-200 upcoming)

12.4 MH / Year

* accepts other projects if cores are idles. May expand # cores.

Offsite High Priority and Opportunistic Resources

OSG Name	Country/Institution	Number of CPUs	MHours / Year	
UCONN	University of Connecticut, USA	0-2,000	0-17.5	
SU	Syracuse University	0-12,000	0-105	
GRIF	Grille au service de la Recherche en lle-de- France, France	0-500?	0-4.4?	
OSG	OSG Opportunistic	0-3000	26.2	

Not dedicated but CLAS12 has high priority on these

Total High Priority:

0 - 14,500 CPUs 0 - 127 MHours / year

CLAS12 Project Summary of Resources

OSG Name	Number of CPUs	MHours / Year	
Dedicated	1,420	12.4	
Priority	0 to 14,500	127	
Opportunistic	0 to 3,000	26	
Total	1420-18920	8 14 - 166	

Note: event time may vary from site to site, depending on the hardware used.

For example, SU CPUs are a factor of 2 slower than others. Need to confirm this, or if it's a software inefficiency.

CLAS12 @OSG: Last 6 months

Total Wall Hours for Top 10 Projects

	total
cms	605 Mil
GLOW	42 Mil
cms.org.cern	35 Mil
- IceCube	32 Mil
 COVID19_FoldingAtHome 	28 Mil
CLAS12	24 Mil
dune	21 Mil
nova	16 Mil
 microboone 	15 Mil
Hawaii_Doetinchem	12 Mil
cms.org.ucsb	12 Mil
 CpDarkMatterSimulation 	11 Mil
_ gm2	11 Mil
WSU_3DHydro	10 Mil
- chemml	10 Mil
 CompBinFormMod 	9 Mil
LIGO	7 Mil
 cms.org.baylor 	6 Mil
electrolytes	6 Mil
- REDTOP	6 Mil

Output Data Staging

• Switched to staging mechanism on the JLab submit/collector node 2.5 months ago

- Fast enough to keep up with ~50k simultaneous OSG jobs (DSTs only) with single serial rsync ~100 MB/s
- We have peaked around 20k, average usually much less
- Jobs no longer write directly to nor write lots of unnecessary small files to Lustre
 - Was a significant contributor to performance issues with both Lustre and the submit node, limiting job throughput
 - "Unfortunately" that means just the top level job script (until its info is embedded in HIPO), one per submission, and HIPO files. Everything else, e.g. logs, remain only on the submit node and only for a couple weeks, can be retrieved upon request.
 - /volatile/clas12/osg2 (the old "osg" directory will eventually disappear)
 - Currently a ~1 hour lag between job success on the portal and appearance of outputs on Lustre
 - This can be addressed if there's high demand, currently decoupled for easier reliability
- Transfer software recovers automatically after hardware issues are fixed (e.g. Lustre/stage/network), preserves logs on all transfers, automatically cleans up old stuff (staging filesystem is finite and shared!)

Improved Diagnostics

- New utilities to analyze condor OSG job data (e.g. by user/generator/site/etc, log file analysis)
- This helped improve job workflow and submission requirements, e.g.
 - Understanding efficiency, preemption, failure modes (true software crashes are <0.1%, usually GEANT)
 - Error detection and reporting in the jobs for immediate exit and automatic retries
 - But have to be careful here, jobs need to be well configured, failure modes understood and not due to our software or submission mistakes, testing before submission, not retrying jobs with terminal issues
 - Detecting and sometimes avoiding sites with huge problems until they're addressed via feedback to OSG and site admins, usually related to XRootD or CVMFS, sometimes unavailable memory
 - Preferring dedicated resources to keep them full without reducing overall throughput
- Background processes run on the JLab submit node to automate everything:

• We now ultimately get 100% job success, hands free

 Average number of attempts is usually ~1.2 (preemption and node issues), so still have the occasional straggler (<<1%) that take a few tries to succeed. So while the majority of a submission may finish, it can take another day or two for that remaining job (not really a problem with that particular job, it just got unlucky).

Improved Diagnostics

We've had a case where efficiency dropped, attempts increase, due to misconfiguration which caused losing dedicated and priority sites, burning cycles on opportunistic resources by jobs that failed or got preempted. That's a red flag for OSG admins and we need to keep our jobs efficient and not waste resources.

A "normal" snapshot of jobs completed in the past 24 hours ... (note, all are log scale)

CLAS12 Project Resources Summary

- CLAS12 Project Goal for Simulations: **55 Million CPU Hours Per Year**
 - That's **6k simultaneous jobs**
- In the past months, when we keep our OSG queue full:
 - We routinely hit 10-15k simultaneous running jobs on OSG
 - and peaked at 20k a few times (which is the size of the JLab farm)
 - largest contributor is Syracuse, a priority site
 - But this is when there's low competition for the priority and opportunistic sites, e.g. when GlueX runs they get ~half
- Maybe we should anticipate "normal" being closer to the rightmost column

Yearly CLAS12 Computing Projections on OSG

OSG Site Type	Number of CPU Cores	MHours	MHours*, Normalized	MHours* @ 30% share of Non- Dedicated
Dedicated	1420	12	12	12
Priority	14500	127	76	23
Opportunistic	3000	26	26	8
Total	18920	166	115	43

* = Normalized for CPU speeds at different sites

	site	run	idle
)	- SU-ITS UChicago UConn-HPC SGridGLA UConn CNAF	0 11185 4810 1033 510 372 365	22423 87 105 0 2 3 1
	tally C	19885	22653