# Improving GEMC model of CLAS12 using electron radiation

#### Áron Kripkó

Justus-Liebig University

June 4, 2021







Task force members:

S. Stepanyan, A. Kripko, C. Smith, M. Ungaro, R. De Vita, H. Avagyan, S. Diehl, V. Kubarovsky, R. Paremuzyan, J. Newton <u>Task force wiki page:</u> <u>https://clasweb.jlab.org/wiki/index.php/Hall-B\_Task\_Forces\_2020#tab=e-\_Radiation</u>

Áron Kripkó (JLU)

Study of electron radiation in CLAS12

June 4, 2021 1 / 27

- Radiated photons accompanying the scattered electrons can be observed
- At the point of radiation the photon has the same angles as the electron
- The radiated photons are identified by analyzing the differences of the angles of the electrons and the neutral hits
- It is important to understand the sources of these radiations.
- The goal is to better describe the CLAS12 detector in GEANT4 model. With correct positions and thickness, the electron radiation and the energy loss of hadrons can be better reproduced.

#### Detected radiated photons

- Inbending 10.6 GeV rga Fall 2018 data was used as measured data and the common large scale MC SIDIS production used for the first publications was used as simulated data
- Radiated photons in the ECal can be identified by plotting  $\theta$  and  $\phi$  diference of every detected electron and neutral particle
- In the longitudinal field of the solenoid, at the point of the radiation, the polar angle of the electron is the same as at the production vertex:

$$\theta_{\gamma} \approx \theta_e^r \approx \theta_e^v$$

• The azimuthal angular difference is more complicated - solenoid field, electron momentum, location of the radiation points

$$\phi_{\gamma} \approx \phi_{e}^{r} \neq \phi_{e}^{v}$$

#### Detected radiated photons

- $\delta\theta = \theta_{\gamma} \theta_e^{\nu}$
- $\delta \phi = \phi_{\gamma} \phi_e^{\nu}$
- Narrow peak at  $\delta heta = 0$  with  $\sigma = 0.17^\circ$  Radiated photon:  $|\delta heta| < 0.7^\circ$



Data

Simulation

#### Detected radiated photons

- $\delta\theta = \theta_{\gamma} \theta_e^v$
- $\delta \phi = \phi_{\gamma} \phi_e^{\nu}$
- Narrow peak at  $\delta \theta = 0$  with  $\sigma = 0.17^{\circ}$  Radiated photon:  $|\delta \theta| < 0.7^{\circ}$



#### Differences between data and simulation

- Kinematics for every radiated electron
- There is a small difference in the kinematic coverage between the simulated and measured data



#### Particle identification

- Radiated photon tagging can be used to study particle identification
- Neutral and negative particles that have same  $\theta$  angles are misidentified photons and electrons
- The 4-momenta of these particles were recalculated during the analysis



#### Energy distribution of the radiated photons



June 4, 2021 8 / 27

#### Number of radiated photons per electron



- Electrons that radiated (data): 22.7%
- Electrons that radiated (simulation): 21.7%

#### Momentum dependence of $\delta\phi$



- Momentum independent band at  $\delta\phi={\rm 0}$  prompt radiation at the vertex
- Momentum dependent bands radiation downstream the vertex

Áron Kripkó (JLU)

June 4, 2021 10 / 27

- $\bullet\,$  Binning in electron momentum and  $\theta\,$
- blue data
- red simulation
- The simulation was scaled to have the same number of radiated photons

#### Momentum dependence of $\delta\phi$



Áron Kripkó (JLU)

Study of electron radiation in CLAS12

June 4, 2021 12 / 2

#### $\theta$ dependence of $\delta\phi$



 $12.5 < \theta < 15$ 

Study of electron radiation in CLAS12

- The distribution are very similar in data and simulation, but the relative intensities and the structures are different
- To identify which detector part contribute to a certain peak, simulations were performed with detector parts missing
- 10 million events, rga 2019 spring setting
- Internal generator:

electrons with 1 GeV<p<11 GeV and 5° < heta < 31°

#### Detector parts taken out

- Parts removed:
  - SVT tungsten shield dark blue
  - SVT neopreme insulation red
  - Foam scattering chamber blue



GEMC rendring of the target, scattering chamber, and the SVT

Áron Kripkó (JLU)

Study of electron radiation in CLAS12

June 4, 2021 15 / 27

- black full detector
- blue SVT neopreme insulation missing
- red SVT tungsten shield missing
- green Foam scattering chamber missing
- yellow all 3 missing
- Normalized with total number of detected electrons

#### Momentum dependence of $\delta\phi$



Áron Kripkó (JLU)

Study of electron radiation in CLAS12

June 4, 2021 17 / 27

#### $\theta$ dependence of $\delta\phi$



Áron Kripkó (JLU)

Study of electron radiation in CLAS12

June 4, 2021 18 / 27

- The scattering chamber has bigger effect at smaller angles
- The SVT shield has bigger effect at higher angles
- They both contribute mainly to the first peak
- The neopreme insulation is responsible for the second peak
- Some material is missing from the SVT geometry
- The neopreme insulation is too dense

#### New SVT Faraday cage geometry - Raffaella

#### CAD rendering

#### Composed of:

- Inner tube made of aluminized mylar:
  - Thickness = 250 um
  - ρ = 1.4 g/cm<sup>3</sup>
- Outer carbon fiber tube
  - Thickness =0.5 mm
  - ρ = 1.75 g/cm<sup>3</sup>
- Front cap disk made of rohacell with aluminum coating
  - Thickness = 10 mm
  - ρ = 0.11 g/cm<sup>3</sup>
- Neoprene thermal insulation:
  - Thickness = 2.7 mm
  - ρ = 1.23 g/cm<sup>3</sup>



June 4, 2021 20 / 27

## New SVT geometry - Raffaella

- The thicknesses and densities were updated
- Missing peak support structures were added
- Updated geometry will appear in next GEMC release for CLAS12
- Modified version is available for testing



GEMC rendering of the new geometry

Study of electron radiation in CLAS12

#### Momentum dependence of $\delta \phi$ - old(blue), new(red)



Áron Kripkó (JLU)

Study of electron radiation in CLAS12

June 4, 2021 22 / 27

### $\theta$ dependence of $\delta \phi$ - old(blue), new(red)



Áron Kripkó (JLU)

Study of electron radiation in CLAS12

June 4, 2021 23 / 27

#### Effects of the new geometry

- More radiation in the first peak
- Less radiation in the second peak
- Comparison between data and simulation with the new geometry
  - SIDIS generator with correct internal radiative effects
  - Slightly different electron distribution sampling in p- $\theta$  bins
    - 10 bins in θ: 10-30
    - 7 bins in momentum: 2-9
    - Only keep lower half: 40 bins in total
    - Maximum 1000 detected electrons per bin
- Normalization: number of events in the histograms
- blue data
- red simulation

#### Momentum dependence of $\delta\phi$



Áron Kripkó (JLU)

Study of electron radiation in CLAS12

June 4, 2021 25 / 27

#### $\theta$ dependence of $\delta\phi$



Áron Kripkó (JLU)

Study of electron radiation in CLAS12

June 4, 2021 26 / 27

- Main sources of the radiation were identified
- In the second peak there is still more radiation in the simulation, but the data is much better reproduced with the new SVT geometry
- With this the first phase of this work is done a note will be written and posted in the CLAS12 note archive
- We plan to continue the studies to correctly implement other parts of the detector that can be identified by studying electron radiation (HTCC inner cone and windows, R1 DC windows, ...)