

Update of the Hadronization Analysis of Protons with eg2 Data

Michael H. Wood Canisius College, Buffalo, NY, USA

Hadronization

Study hard processes in nuclei to probe the QCD confinement dynamics: Color propagation (CP) and fragmentation - Hadronization process

Motivation - E_{e+} =27 GeV studies by Hermes

Production time τ_p : Time spent by a deconfined quark to neutralize its color charge. Stimulated by energy loss to the medium by gluon exchange. <u>Observable</u>: transverse momentum broadening. $\Delta p_T^2 = \langle p_A^2 \rangle - \langle p_D^2 \rangle$

The eg2 Hadronization Program

Mesons

- π^+ , π^- S. Moran, R. Dupre, H. Hakobyan (under review)
- π^0 T. Mineeva (under review)
- *K*⁰ A. Daniels *et al.*, Phys. Lett. B 706, 26 (2011)
- η O. Soto (thesis)
- ω A. Borquez (Master's thesis)
- Di-pions A. Radic, M. Arratia

Baryons

 $\Lambda(1520)$ - T. Chetry, L. El Fassi (under review)

Proton - M. Wood

Results from Hermes

Hermes results

A. Airapetian, *et al.*, Nucl. Phys. B 780 (2007) 1.

E= 27 GeV; Positron beam

Pions and kaons give similar attenuation

The results for protons cannot really be related to those for any of the other particles. Because protons are already present in a nucleus, an appreciable fraction of them may not come from hadronization.

Multidimensional Analysis by HERMES

A. Airapetian, et al., Eur. Phys. J. A (2011) 47: 113

Multidimensional Analysis by HERMES

A. Airapetian, et al., Eur. Phys. J. A (2011) 47: 113

Multiplicity Ratios - 3D

Neutral pions - results by T. Mineeva

3D binning - Q2, ν , z_h

Currently under review.

Event Selection

 $\frac{\text{Kinematical cuts}}{Q^2 \ge 1 \text{ GeV}^2}$ $W \ge 2 \text{ GeV}$ $y = \frac{\nu}{E_e} \le 0.85$

Applied electron ID cuts

EC E_{tot}/P sampling fraction

CC # photo-electrons > 28

 $EC E_{IN} > 60 MeV$

Momentum > 650 MeV

Select positively charged particles and make a cut on the TOF based on the proton mass.

Fiducial cuts applied

eg2 Proton MR - 1D

Applied the normalization for the number of DIS electrons per target, radiative correction, and Coulomb correction from charged pion analysis (Sebastian Moran).

eg2 Proton MR - 1D

eg2 Proton MR - 1D

Statistical errors.

eg2 Proton MR - 3D

$$R_{M}^{h} = \begin{bmatrix} \frac{I_{A}}{\epsilon_{A}} \\ \frac{I_{B}}{P_{D}^{IS}} \\ \frac{I_{C}}{\epsilon_{D}} \end{bmatrix}_{h} \begin{bmatrix} \frac{N_{D}^{DIS}}{N_{A}^{DIS}} \\ \frac{I_{C}}{P_{D}^{IS}} \end{bmatrix}_{e} = \begin{bmatrix} \frac{I_{A}}{P_{A}^{DIS}} \\ \frac{I_{C}}{P_{D}^{IS}} \end{bmatrix}_{h} \begin{bmatrix} \frac{N_{D}^{DIS}}{N_{A}^{DIS}} \\ \frac{I_{C}}{\epsilon_{A}} \end{bmatrix}_{e} \begin{bmatrix} \frac{\epsilon_{D}}{\epsilon_{A}} \end{bmatrix}_{e}$$

Juan Pablo Garces, UTFSM undergraduate

Juan Pablo Garces, UTFSM undergraduate

Summary

The analysis is proceeding

- Analysis of eg2 data (M. H. Wood)
- Need to apply the acceptance correction
- Try different combination for multi-dimension analysis
- Start systematic error analysis
- Analyze p_T^2 and $<\Delta p_T^2 >$

Interesting trends

- Large R^p at low z_h
- Nuclear dependence in low vs high z_h
- Good agreement with GiBUU

Backup slides

The Program

DIS channels: *stable* hadrons, accessible with 11 GeV JLab experiment PR12-06-117

Actively underway with existing 5 GeV data

meson	сτ	mass	flavor content	baryon	сτ	mass	flavor content
π^0	25 nm	0.13	uudd	p	stable	0.94	ud
π^+,π^-	7.8 m	0.14	ud, du	\bar{p}	stable	0.94	ud
η	170 pm	0.55	uuddss	Δ	79 mm	1.1	uds
ω	23 fm	0.78	uuddss	A(1520)	13 fm	1.5	uds
η'	0.98 pm	0.96	uuddss	Σ^+	24 mm	1.2	us
ϕ	44 fm	1.0	uuddss	Σ	44 mm	1.2	ds
f1	8 fm	1.3	uuddss	Σ^0	22 pm	1.2	uds
K	27 mm	0.50	ds	Ξ^0	87 mm	1.3	us
K^+, K^-	3.7 m	0.49	us, us	<u> </u>	49 mm	1.3	ds