Run Group-M Update

Justin Estee

Run Group-M

- RGM is made up of two proposals will investigate two important physics processes:
- Short Range Correlations E12-17-006A
- Electrons for Neutrinos E12-17-006

Short Range Correlations (SRCs)

Short range, short lived, highly correlated pairs

High relative momentum Low center of mass momentum

High momentum tail

Electron scattering off an SRC pair

SRC Program Previous Success

SRC Program Previous Success

- Tremendous success of the CLAS6 data mining SRC program with few signal counts (Science, Nature, etc.)
- With increased luminosity and CLAS12 we are expecting 10 -40x more data
- Over a wider range of nuclei
- Explore more observables and mass and isospin scaling

2018-20 SRC CLAS Publications:

- Nature 578, 540 (2020)
- Nature 566, 354 (2019)
- Nature 560, 617 (2018)
- PRL 122, 172502 (2019)
- PRL 121, 092501 (2018)
- Phys. Lett. B 797, 134792 (2019) Follow up Theory Publications
- Phys. Lett. B 805, 135429 (2020)
- Phys. Lett. B 791, 242 (2019)
- Phys. Lett. B 785, 304 (2018)
- Phys. Lett. B 780, 211 (2018)

• Constrain NN interaction and nuclear wave function

- Constrain NN interaction and nuclear wave function
- SRC formation processes

- NN interaction and nuclear wave function
- SRC formation processes
- 3N SRC pair observation

- NN interaction and nuclear wave function
- SRC formation processes
- 3N SRC pair observation
- Reaction mechanisms

Electrons for Neutrinos - $e4\nu$

- Neutrino oscillation experiments requires reconstruction of incident neutrino energy
- Requires well understood models for neutrino interaction
- Electrons and neutrinos interact with nuclei in similar ways
- Test energy reconstruction over wide range of nuclei relevant to these experiments

RGM Status

- Beam energies 2, 4, 6 GeV
- 30 PAC days scheduled October
- Standard CLAS12 configuration
 - Forward Tagger off (extra shielding)
 - LTCC empty
 - vacuum pipe downstream of target to reduce backgrounds
 - BAND (Backward Angle Neutron Detector)
- Detailed run plan draft
 - <u>https://bit.ly/3gZXpmE</u>

		Run	Plan	
		Beam Energy	Target	PAC Days
outhend	ling	2	С	1
JULDENC	mβ	2	Ar	1
		4	Η	1
inbendi	ng	4	\mathbf{C}	1
		4	Ar	1
		6	Η	1
		6	d	4
inben	din	g 6	$^{4}\mathrm{He}$	4
		6	Sn	2.5
		6	Ar	1.5
		6	^{40}Ca	3
		6	^{48}Ca	3
		6	\mathbf{C}	3
	Ov	verhead + empty		3
		Total		30

- Liquid targets H,D,He,Ar
- Solid targets: C, Sn, Ca
- Target assembly
- Acceptance matching of C, Sn solid targets to liquid targets

RGM Task Force and Milestones

- Weekly RGM meetings
- Monthly Task Force meetings to meet milestones
 - Members: V. Kubarovsky, N. Baltzell, B. Miller, E. Pasyuk

		20	20							2021					
		Nov	Dec	Jan	Feb	Mar	Apr	May	Jun	July	Aug	Sep	Oct	Nov	Dec
1	Target														
1.1	Target design	M1.1													
1.1.1	Target production				M1.2										
1.2	Target test														
2	CLAS12 Configuration	_		_											
2.1	BAND In		M2.1												
2.2	FT off, shield on, LTCC no need		M2.2												
2.3	TORUS-Solenoid setting (Inb, Oub)					M2.3									
3	Off-line analysis framework														
3.1	Identify a cook		M3.1												
3.2	Start data analysis		M3.2												
3.2.1	Trigger validation software					M3.3									
4	Monte Carlo simulation	_				_									
4.1	Implement target's geometry			M4.1											
4.3	Define electron trigger parameters				M4.2										
4.4	Generate trigger DC roads, Inbending, Outbending, beam energy dependent.				M4.3										
5	Calibrate data during the run	_	_			_									
5.1	Organization of the Calibrator team			M5.1											
5.2	Be familiar with the calibration procedures					M5.2									
5.3	Close interaction with CALCOM group			M5.3											
6	Slow control														
6.1	Target control GUI				M6.1										
6.2	Slow control of all subsystems ready and tested	-						M6.2		1					
7	On-line monitoring program														
7.1	Identify on-line monitoring person					M7.1									
7.2	The CLAS12 monitoring program	-						-	M7.2.1	M7.2.2	M7.2.3				
8	On-line monitoring program														
8.1	Prepare detailed run plan				M8.1										
8.2	The CLAS12 monitoring program							M8.2							
9	On-line monitoring program														
9.1	Conduct of operation (COO)														
9.2	Experiment SafetyAssessment Document (ESAD)														

Prior goals (March)

- Data analysis of Deuterium data from RGB
- Developing online monitoring scripts
- Practicing calibration and cooking procedures
- Simulate lower torus field settings in lower beams
 - Lower torus field or not?
- Simulate electron threshold settings
- Cook small set of Engineering runs from RGA which are relevant to RGM (lower beam energies, solenoid, and toroidal fields combinations)

Completed since last update

- Finished MC simulations for torus settings & electron thresholds
- Final stages of calibrating and a final cook for Engineering Runs
- Solid targets ordered, testing, and are being assembled
- Liquid target cells tested and ready to run

Torus Simulations (6 GeV in-bending)

Lowering torus field will:

- Worsen resolution
- Deviate from prior CLAS12 experience
- Provide very little to no increase within the cuts we are taking
- Conclusion: Keep full in-bending. Similar story at 4 GeV staying with previous CLAS12 experience

Torus Simulations (2 GeV out-bending)

- 2 GeV is relevant to e4v (neutrinos) experiment
- Here we want to maximize the charged particle multiplicity > 2
 - Orders of magnitude higher counts Mc = 2
- Maximum between 0.6 and 0.4
- Conclusion: 0.5 out-bending at 2 GeV; also consistent with previous CLAS12 settings

Electron Acceptance Simulations (2 GeV out-bending)

- Minimum electron momentum accepted depends on the torus strength
- Conclusion: Torus strength of 0.5 out-bending gives sufficiently low electron momenta

Electron threshold settings (6 GeV)

- Relevant threshold quantities:
 - ECAL = EIN + EOUT + PCAL
 - PCAL
- Typical CLAS12 thresholds:
 - ECAL ~100 MeV
 - PCAL ~60 MeV
- Consistent with our simulations
- Increasing threshold does not negatively affect physics signal

Electron threshold settings (2 GeV)

- Relevant threshold quantities:
 - ECAL = EIN + EOUT + PCAL
 - PCAL
- Typical CLAS12 thresholds:
 - ECAL ~100 MeV
 - PCAL ~60 MeV
- Consistent with our simulations
- Increasing threshold does not negatively affect physics signal

Current ongoing preparations

- Developed semi-online physics monitoring code CLAS12root
- Combined with typical monitoring plots used to monitor CLAS12 this will ensure we see the expected counts in our physics channels of interest
 - Not expecting any neutron analysis to be semi-online
- BAND installation will be in July
- Ongoing analysis to understand CLAS12 resolutions
- Solid targets should be finished by end of July

RGM calibrations

- Chef and Analysis coordinator involved in CALCOM
- Set of Engineering data calibrated and cooked for Beam offset, FTOF, DC
- HTCC, FT, FTOF, CND remaining calibrations
- Cooking and calibrating this data set has provided a critical preparation for the real online production calibrations and cooking

Looking ahead

- Install BAND
- Mature online monitoring analysis
- Collect all monitoring scripts and practice/train
- Preparation for data taking and lab access

Liquid Targets	Target 1	Thickness (cm)		
D		5		
He		5		
Н		5		
Ar		0.5		
Nuclear Targe	ets Ai	eal Density (m	g cm ⁻²)	Target Thickness (mm)
⁴⁰ Ca				
⁴⁰ Ca ⁴⁸ Ca				
⁴⁰ Ca ⁴⁸ Ca C		400		1.8
⁴⁰ Ca ⁴⁸ Ca C ¹²⁰ Sn		400 200		1.8 0.3
⁴⁰ Ca ⁴⁸ Ca C ¹²⁰ Sn C (muli-foil)		400 200 100		1.8 0.3 0.5

2 GeV (out-bending) Zoom

2 GeV (out-bending)

Training Personnel in CLAS12 Analysis

4-GeV Deuterium RGB (e,e'p)n

Protons going in Forward Detector

4-GeV Deuterium RGB (e,e'p)n

Protons going in Central Detector

Missing Mass Resolution

RGM related links

- RGM Weekly meeting
 - https://clasweb.jlab.org/wiki/index.php/Run_Group_M
- RGM Wiki
 - https://wiki.jlab.org/clas12-run/index.php/Run_Group_M
- RGM Task Force (Monthly)
 - <u>https://clasweb.jlab.org/wiki/index.php/Template:Hall-B_Run_Group_Task_Forces_:_RG-M</u>

- Carbon and Sn targets will have a multi-foil construction
 - approximates the liquid target acceptance
- Target change estimates
 - Empty to Liquid ~ 8 hrs.
 - Liquid ↔ solid target ~ 22 hours
 - Solid \rightarrow solid target ~ 12 hours