J/W in the di-muon channels **RICHARD TYSON**

University of Glasgow

Experiment Overview

 $ep \rightarrow (e')\mu^+\mu^-p$ $ed \rightarrow (e')\mu^+\mu^-p(n_{spec})$

- The electron beam produced by CEBAF scatters with a liquid hydrogen or deuteron target through the exchange of a quasi-real photon $Q^2 \sim 0$.
 - The proton and $\mu^+\mu^-$ pair produced in J/ ψ decay are detected in the FD.

Analyses based on chanser framework: <u>https://github.com/dglazier/chanser</u>

J/ψ quasi-real photoproduction

Feynmann diagram of P_C^+ pentaquark photoproduction.

J/ψ Near Threshold Photoproduction

Measuring the total cross section as a function of photon energy allows us to study the J/ψ production mechanism [2].

The total cross section can be related to J/ψ -p forward scattering via VMD which will allow to estimate the QCD trace anomaly that is a part of the proton mass decomposition.

[3] predicts that the t dependency of the differential cross section is defined by a nucleon gluonic form-factor, for which a dipole form is assumed with $m_g^2 \approx 1 \ GeV^2$ as:

 $F(t) \propto (1 - t/m_g^2)^{-2}$

Measurements of the J/ψ total cross section as a function of the photon beam energy and theoretical predictions scaled to GlueX data [1].

[1] A. Ali, et. al. (GlueX Collaboration), Phys. Rev. Lett. **123**, 072001 (2019).

[2] S. Brodsky, E. Chudakov, P. Hoyer, J. Laget, *Phys. Lett. B.* **498**, 23 (2001).

[3] L. Frankfurt, M. Strikman, Phys. Rev. D. 66, 031502 (2002)

P_c^+ resonances with CLAS12

- Different theoretical models for the structure of the P_C^+ pentaquarks favor different decay mechanisms.
- Should be able to place upper limits on the branching fraction $B(P_C^+ \rightarrow J/\psi p).$

The J/ψ p invariant mass distribution measured at the LHCb. Taken from:

R. Aaij, et. al. (LHCb Collaboration), Phys. Rev. Lett. **122**, 22 (2019).

Initial Event Selection

- To select events in quasi-real photoproduction regime we can minimize:
 - The difference between the initial and scattered electron four-momentum, Q^2
 - The scattered electron transverse momentum fractions in the x and y components, $|\frac{Px}{P}|$ and $|\frac{Py}{P}|$.
- Similarly, we want the missing mass close to the mass of the scattered electron (which is effectively 0).
- The widths of these distributions can be parametrised as a function of the photon energy.

Muon Identification

- Muon candidates are minimum ionizing particles and are therefore selected based on their energy deposition in the calorimeters.
- Use Cuts on the energy deposition as:
 - ▶ PCAL<60 MeV
 - ECin<80 MeV</p>
 - ECout<110 MeV</p>
- ► 60 MeV in the PCAL is the minimum requirement for electrons, and J/ψ doesn't decay to $\pi^+\pi^-$.

 J/ψ and Background Yields vs Calorimeter Cuts

DC Fiducial Cuts

- Cuts are made on the fiducial region of the DC by removing events close to the edge of the detector.
- Here we use the parametrizations defined in the RG-A analysis note for electrons.
- These muon fiducial cuts are still being refined.

Muon ID Refinement

The energy deposition cuts are susceptible to a high pion contamination.

- Train a multivariate classifier on MC data produced using the clas12-elSpectro event generator.
- The training is done with the ROOT TMVA software package.
- Our positive and negative training samples are then:
 - MC μ⁺μ⁻ which pass energy deposition cuts.
 MC π⁺π⁻ which pass energy deposition cuts.

Response

- The classifier output is given as a probability of being a signal event. We call this probability the response.
- The classifier effectively reduces the PID process down to a cut on the response.
- Here we place this cut at -0.12.

Response Cut Value

150

100

50

-0.4

$\mu^+\mu^-$ Invariant Mass in RG-A

- Produced on RG-A fall2018 dataset, runs 5032 to 5419.
- e^+e^-p has ~166 ± 18 J/ ψ in the same dataset.
- No J/ ψ signal in the events rejected by our cuts and BDT.

$\mu^+\mu^-$ Invariant Mass in RG-B

- Very very early days of this analysis.
- Produced on full spring2019 dataset.
- Small caveat that the train used here has tighter energy deposition requirements.
- Displacement of $\mu^+\mu^- J/\psi$ mass peak from RG-A to RG-B is 3.096 – 3.082 = 14 MeV. Similar displacement in e^+e^- .

Conclusion and Next Steps

The analysis for J/ ψ photoproduction in the $\mu^+\mu^-$ p final state is well advanced.

The next step is to calculate the total and differential cross sections.

Backup Slides

PCAL Fiducial Cuts

- Cuts are made on the fiducial region of the PCAL, by removing events close to the edge of the detector in V/W.
- It seems like most of the shower is well contained within the fiducial volume and we don't need these cuts here.

μ- Sampling Fraction vs LV

