
Fun4All Simulation – CORE central detector

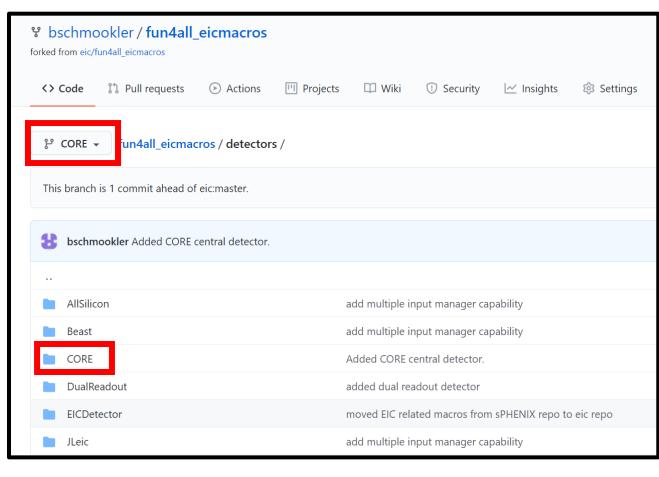
Barak Schmookler

1

CORE implementation in Fun4All

Code availability

➤Code is available here:


https://github.com/bschmookler/fun4all_eicmacros/tree/C ORE/detectors

➢ Some information for setting up the environment to run the code − either on the BNL or Jefferson Lab machines or on the singularity container − can be found in the README file here:

https://github.com/JeffersonLab/dis-reconstruction

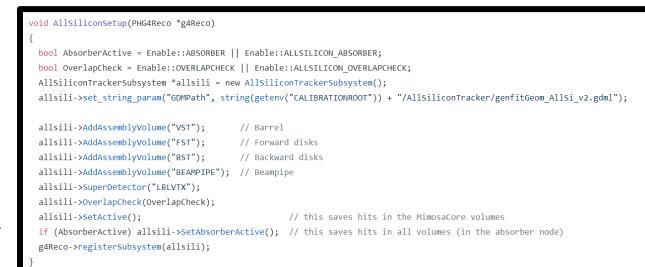
More complete information can be found in this tutorial:

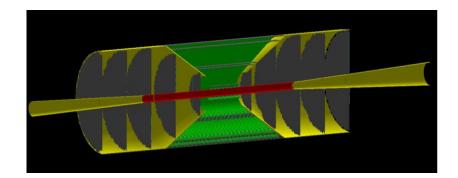
https://indico.bnl.gov/event/7281/

Running the simulation

- ➤To run the simulation, simply do root -l 'Fun4All_G4_CORE.C(1000)'
- ➤This will run 1000 events through the detector.
- The Fun4All_G4_CORE.C script is where we define the event generator to run (or read-in if the events were previously generated), the beam parameters (e.g., crossing angle) to use, the detectors and magnetic fields to use, and the output ROOT files we want to create.

ય	²⁹ CORE - fun4all_eicmacros / detectors / CORE /			
This	This branch is 1 commit ahead of eic:master.			
8	bschmookler Added CORE central detector.			
	mapping	Added CORE central detector.		
ß	DisplayOn.C	Added CORE central detector.		
D	Fun4All_G4_CORE.C	Added CORE central detector.		
C	G4History.macro	Added CORE central detector.		
۵	G4Setup_CORE.C	Added CORE central detector.		
ß	G4_AllSilicon.C	Added CORE central detector.		
D	G4_CEmc_EIC.C	Added CORE central detector.		
D	G4_DIRC.C	Added CORE central detector.		
D	G4_EEMC.C	Added CORE central detector.		
Ľ	G4_FEMC_EIC.C	Added CORE central detector.		
Ľ	G4_Magnet.C	Added CORE central detector.		
D	G4_PlugDoor_EIC.C	Added CORE central detector.		
D	G4_RICH.C	Added CORE central detector.		
Ľ	G4_TTL_EIC.C	Added CORE central detector.		
Ľ	init_gui_vis.mac	Added CORE central detector.		
Ľ	vis.mac	Added CORE central detector.		

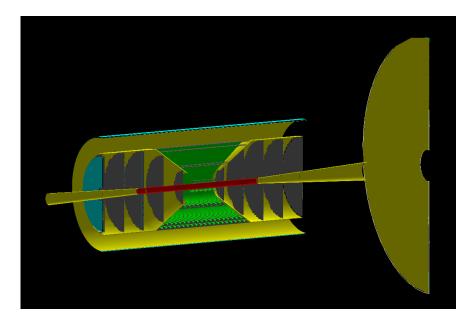

Running the simulation


- As an example, to include the electron-side electromagnetic calorimeter, we need to set Enable::EEMC = true; in Fun4All_G4_CORE.C
- And we need to include G4_EEMC.C in G4Setup_CORE.C
- In order to use the EEMC evaluator – to see tower hits and energy clusters in an output ROOT files– we also need to set Enable::EEMC_EVAL = true;

ů	^g CORE - fun4all_eicmacros / detectors / CORE /			
This	This branch is 1 commit ahead of eic:master.			
8	bschmookler Added CORE central detector.			
	mapping	Added CORE central detector.		
D	DisplayOn.C	Added CORE central detector.		
	Fun4All_G4_CORE.C	Added CORE central detector.		
	G4History.macro	Added CORE central detector.		
	G4Setup_CORE.C	Added CORE central detector.		
Ľ	G4_AllSilicon.C	Added CORE central detector.		
ß	G4_CEmc_EIC.C	Added CORE central detector.		
D	G4_DIRC.C	Added CORE central detector.		
D	G4_EEMC.C	Added CORE central detector.		
Ľ	G4_FEMC_EIC.C	Added CORE central detector.		
Ľ	G4_Magnet.C	Added CORE central detector.		
D	G4_PlugDoor_EIC.C	Added CORE central detector.		
D	G4_RICH.C	Added CORE central detector.		
	G4_TTL_EIC.C	Added CORE central detector.		
	init_gui_vis.mac	Added CORE central detector.		
Ľ	vis.mac	Added CORE central detector.		

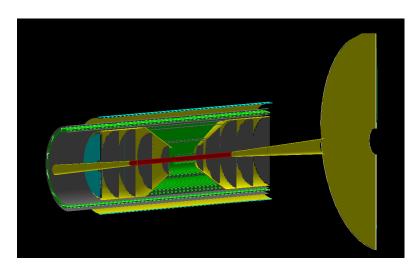
All-silicon tracking detector

- The all-silicon tracker is defined in G4_AllSilicon.C
- The tracker geometry is defined in a .gdml file that is read-in by the script.
- Track hits are saved for the active layers. The track reconstruction is done in the code fun4all_eicmacros/common/G4_Track ing_LBL.C
- The tracking performed is 'fast tracking' – the hits on the individual layers are smeared according to a set position resolution and then a Kalman filter is applied.



Additional Silicon (or GEM) detectors

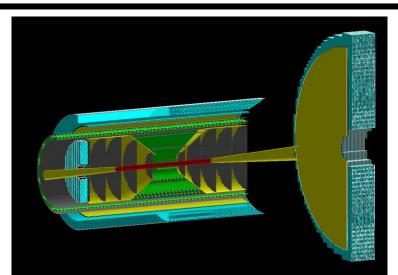
- Additional silicon sensors (can be easily replaced by GEMs) are implemented in G4_TTL_EIC.C
- ➤The sensors are called FTTL (forward), ETTL (electron-side), and CTTL (central).
- If we can specify position resolutions, the hits can be added to the fast-track reconstruction module.


ttl->get_geometry().AddLayer("SiliconSensor", "G4_Si", tSilicon, true, 100); ttl->get_geometry().AddLayer("Metalconnection", "G4_Al", 100 * um, false, 100); ttl->get_geometry().AddLayer("HDI", "G4_KAPTON", 20 * um, false, 100); ttl->get_geometry().AddLayer("Cooling", "G4_WATER", 100 * um, false, 100); ttl->get_geometry().AddLayer("Support", "G4_GRAPHITE", 50 * um, false, 100); ttl->get_geometry().AddLayer("Support_Gap", "G4_AIR", 1 * cm, false, 100); ttl->get_geometry().AddLayer("Support2", "G4_GRAPHITE", 50 * um, false, 100);

DIRC geometry

- The geometry of the DIRC is implemented in G4_DIRC.C
- The geometry is implemented in 3 parts: the 12-sector quartz radiator, the aluminum inner skin, and the aluminum outer skin.
- No read-out or evaluator modules have been implemented yet.

PHG4SectorSubsystem *dirc;
<pre>dirc = new PHG4SectorSubsystem("DIRC");</pre>
<pre>dirc->get_geometry().set_normal_polar_angle(M_PI / 2);</pre>
<pre>dirc->get_geometry().set_normal_start(G4DIRC::radiator_R * PHG4Sector::Sector_Geometry::Unit_cm());</pre>
<pre>dirc->get_geometry().set_min_polar_angle(atan2(G4DIRC::radiator_R, G4DIRC::z_start));</pre>
<pre>dirc->get_geometry().set_max_polar_angle(atan2(G4DIRC::radiator_R, G4DIRC::z_end));</pre>
<pre>dirc->get_geometry().set_min_polar_edge(PHG4Sector::Sector_Geometry::FlatEdge());</pre>
<pre>dirc->get_geometry().set_max_polar_edge(PHG4Sector::Sector_Geometry::FlatEdge());</pre>
<pre>dirc->get_geometry().set_material("Quartz");</pre>
<pre>dirc->get_geometry().set_N_Sector(12);</pre>
<pre>dirc->OverlapCheck(OverlapCheck);</pre>
<pre>dirc->get_geometry().AddLayer("Radiator", "Quartz", 1.7 * PHG4Sector::Sector_Geometry::Unit_cm(), true)</pre>
g4Reco->registerSubsystem(dirc);



8

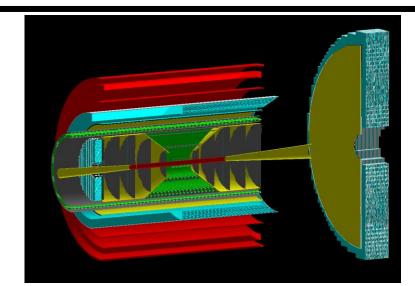
Electromagnetic calorimeters

- The forward and electron-side electromagnetic calorimeters are implemented in G4_FEMC_EIC.C and G4_EEMC.C, respectively.
- These scripts read-in the calorimeter geometry from a text file in the *mapping* subdirectory. Those text files are created by a simple ROOT macro which defines the calorimeter position, inner and outer radius, and tower geometry.
- The barrel calorimeter is defined in G4_CEmc_EIC.C. The geometry is defined directly in the script. The inner radius is 65 cm and the thickness is 11.8 cm. The negative η side is PbWO4 and extends down to z = 140 cm. The positive η side consists of 40 layers: PMMA as the active part, and W powder absorber.
- For all three of these calorimeters, tower digitization and clustering algorithms are defined in the above scripts.

RawTowerBuilderByHitIndex *tower EEMC = new RawTowerBuilderByHitIndex("TowerBuilder EEMC"); tower_EEMC->Detector("EEMC"); tower_EEMC->set_sim_tower_node_prefix("SIM"); tower EEMC->GeometryTableFile(mapping eemc.str()); se->registerSubsystem(tower EEMC); /* Calorimeter digitization */ // CMS lead tungstate barrel ECAL at 18 degree centrigrade: 4.5 photoelectrons per MeV const double EEMC photoelectron per GeV = 4500; RawTowerDigitizer *TowerDigitizer EEMC = new RawTowerDigitizer("EEMCRawTowerDigitizer"); TowerDigitizer EEMC->Detector("EEMC"); TowerDigitizer EEMC->Verbosity(verbosity); TowerDigitizer EEMC->set raw tower node prefix("RAW"); TowerDigitizer_EEMC->set_digi_algorithm(RawTowerDigitizer::kSimple_photon_digitization); TowerDigitizer EEMC->set pedstal central ADC(0); TowerDigitizer EEMC->set pedstal width ADC(8); // eRD1 test beam setting TowerDigitizer_EEMC->set_photonelec_ADC(1); //not simulating ADC discretization error TowerDigitizer EEMC->set photonelec yield visible GeV(EEMC photoelectron per GeV); FowerDigitizer EEMC->set zero suppression ADC(16); // eRD1 test beam setting

Magnet geometry and field

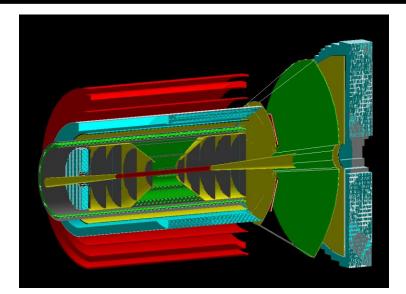
- The magnet geometry is implemented in G4_Magnet.C
- The magnet extends from a radius of 90 cm out to 122.5 cm. The half-length of the magnet is 125 cm. The geometry consists of an inner and outer cryostat, and magnetic coil. The material is aluminum-5083. This is (roughly) consistent with the ZEUS magnet.
- The magnetic field is currently implemented as a uniform solenoidal field (in Fun4All_G4_CORE.C), which can be set to any strength. In the simulation, the field is implemented separately from the magnet – this is, one can remove the magnet material and keep the field.
- In Fun4All_G4_CORE.C, there is the option to read-in a magnetic field map.


ouble Magnet(PHG4Reco* g4Reco, double radius)

```
bool AbsorberActive = Enable::ABSORBER || Enable::MAGNET_ABSORBER;
bool OverlapCheck = Enable::OVERLAPCHECK || Enable::MAGNET_OVERLAPCHECK;
int verbosity = std::max(Enable::VERBOSITY, Enable::MAGNET_VERBOSITY);
```

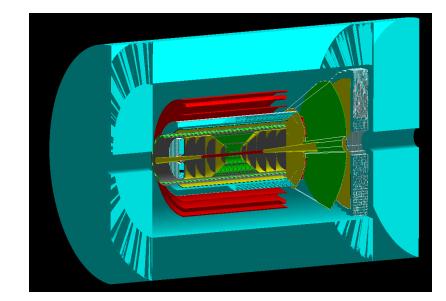
double magnet_inner_cryostat_wall_radius = 90; double magnet_inner_cryostat_wall_thickness = 1; double magnet_coil_radius = 105; double magnet_coil_thickness = 8.; double magnet_length = 250.; double coil_length = 242.; if (radius > magnet_inner_cryostat_wall_radius) {

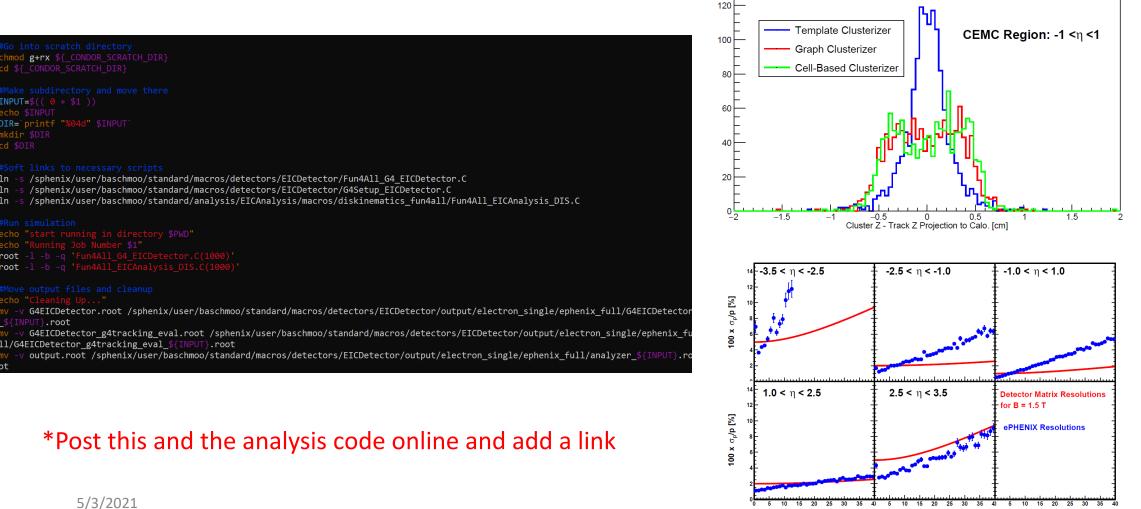
cout << "inconsistency: radius: " << radius</pre>


<< " larger than Magnet inner radius: " << magnet_inner_cryostat_wall_radius << endl; gSystem->Exit(-1);

(Gas) RICH geometry

- Dual-radiator RICH with outward-reflecting mirrors should go in the forward endcap (eRD14 consortium).
- ➤Currently, the geometry of the gas RICH from the *ePHENIX* detector is used as a placeholder. This geometry is implemented in *G4_RICH.C*


//! ePHENIX Gas RICH. Ref to Geometry parameter defined in ePHENIXRICH::RICH_Geometry				
//! \param[in] N_RICH_Sector number of RICH sectors				
//! \param[in] min_eta minimal eta coverage				
//! \param[in] R_mirror_ref Radius for the reflection layer of the mirror				
<pre>void RICHSetup(PHG4Reco* g4Reco,</pre>	//			
<pre>const int N_RICH_Sector = 8,</pre>	//			
<pre>const double min_eta = 1.3,</pre>	//			
<pre>const double R_mirror_ref = 190,</pre>	//cm // Reduced from 195 (2014 LOI) ->			
<pre>const double z_shift = 75,</pre>	// cm			
<pre>const double R_shift = 18.5,</pre>	// cm			
<pre>const double R_beampipe_front = 8,</pre>	<pre>// clearance for EIC beam pipe flange</pre>			
<pre>const double R_beampipe_back = 27</pre>	<pre>// clearance for EIC beam pipe flange</pre>			


Hadronic Calorimeter / Flux Return

- The geometry of the hadronic calorimeter / flux return has been implemented in G4_PlugDoor_EIC.C with passive steel-1006.
- The material extends from z = -300 cm to z = + 440 cm. The outer-radius is 250 cm.

PHG4CylinderSubsystem *flux_return_minus = new PHG4CylinderSubsystem("FLUXRET_ETA_MINUS", 0); flux_return_minus->set_double_param("length", G4PLUGDOOR::length_1); flux_return_minus->set_double_param("radius", G4PLUGDOOR::r_1); flux_return_minus->set_double_param("place_z", G4PLUGDOOR::place_z1); flux_return_minus->set_double_param("thickness", G4PLUGDOOR::r_2 - G4PLUGDOOR::r_1); flux_return_minus->set_string_param("material", material); flux_return_minus->setActive(flux_door_active); flux_return_minus->SuperDetector("FLUXRET"); flux_return_minus->OverlapCheck(OverlapCheck); g4Reco->registerSubsystem(flux_return_minus);

Example (using *ePHENIX* detector) batch farm and analysis code

Momentum [GeV/c]

Momentum [GeV/c]

13

Momentum [GeV/c]

Thank you!

Questions?