TMD Studies: from JLab to EIC JLab (virtual) May 6-7, 2021

Pursuing TMD physics at HERMES kinematics

SIDIS: probing TMD PDFs through fragmentation

certain kinematic conditions

- scattering by partons
- sufficient energy for hadronization
- current vs. target fragmentation
- low enough transverse momentum for TMD factorization

hadrons

iud

S _

 K^+

π

 π^0

2d kinematic phase space

Gunar Schnell

2d kinematic phase space

Gunar Schnell

the analysis of the z dependence.

2d kinematic phase space

Gunar Schnell

SIDIS interpretation

U **U.D** current vs. tar

Gunar Schnell

U **U.D** current vs. tar

Gunar Schnell

U **U.**5 current vs. tar

selected hadrons at HERMES mainly forward-going in photon-nucleon c.m.s. Gunar Schnell

current vs. target fragmentation

Gunar Schnell

TMDs: from JLab to EIC - May 6-7, 2021

10² 10 10

- TMD factorization requires a large scale (Q^2) and small transverse momentum
- overall, Q mainly larger than $P_{h\perp}$
- not fulfilled in all kinematic bins
- more challenging, especially at low x (=low Q^2), for more stringent constraint of $zQ \gg P_{h\perp}$

lowest x bin

Gunar Schnell

 $--- Q^2 = P^2_{h\perp}$

lowest x bin

Gunar Schnell

--- $Q^2 = P^2_{h\perp}$ --- $Q^2 = 2 P^2_{h\perp}$ --- $Q^2 = 4 P^2_{h\perp}$

disclaimer: coloured lines drawn by hand

highest x bin

Gunar Schnell

--- $Q^2 = P^2_{h\perp}$ --- $Q^2 = 2 P^2_{h\perp}$ --- $Q^2 = 4 P^2_{h\perp}$

disclaimer: coloured lines drawn by hand

highest x bin

Gunar Schnell

 $--- Q^2 = P^2_{h\perp}/z^2$ -- $Q^2 = 2 P^2_{h\perp}/z^2$ --- $Q^2 = 4 P^2_{h\perp}/z^2$

disclaimer: coloured lines drawn by hand

lowest x bin

Gunar Schnell

-- $Q^2 = P^2_{h\perp}/z^2$

all other x-bins included in the Supplemental Material of JHEP12(2020)010

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects [Diehl & Sapeta, EPJ C 41 (2005) 515], e.g.,

$$\begin{pmatrix} \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{I}} \\ \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{I}} \\ \left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{I}} \end{pmatrix}^{\mathsf{I}} = \begin{pmatrix} \cos \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \end{pmatrix}$$

Gunar Schnell

$$-\sin\theta_{\gamma^{*}} - \sin\theta_{\gamma^{*}} \\ \cos\theta_{\gamma^{*}} = 0 \\ 0 = \cos\theta_{\gamma^{*}} \end{pmatrix} \begin{pmatrix} \left\langle \sin\phi \right\rangle_{UL}^{\mathsf{q}} \\ \left\langle \sin(\phi - \phi_{S}) \right\rangle_{UT} \\ \left\langle \sin(\phi + \phi_{S}) \right\rangle_{UT} \end{pmatrix}$$

 $\mathbf{P}_{h\perp}$

 $\searrow x$

 \mathbf{P}_h

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects [Diehl & Sapeta, EPJ C 41 (2005) 515], e.g.,

$$\begin{pmatrix} \left\langle \sin \phi \right\rangle_{UL}^{\mathsf{I}} \\ \left\langle \sin(\phi - \phi_S) \right\rangle_{UT}^{\mathsf{I}} \\ \left\langle \sin(\phi + \phi_S) \right\rangle_{UT}^{\mathsf{I}} \end{pmatrix}^{\mathsf{I}} = \begin{pmatrix} \cos \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \\ \frac{1}{2} \sin \theta_{\gamma^*} \end{pmatrix}$$

Gunar Schnell

need data on same target for both polarization orientations!

 $\mathbf{P}_{h\perp}$

 \mathbf{P}_h

- theory done w.r.t. virtual-photon direction
- experiments use targets polarized w.r.t. lepton-beam direction
- mixing of longitudinal and transverse polarization effects

$$\frac{N^{+}(x) - N^{-}(x)}{N^{+}(x) + N^{-}(x)} = \frac{\int d\omega \,\epsilon(x,\omega) \,\Delta\sigma(x,\omega)}{\int d\omega \,\epsilon(x,\omega) \,\sigma(x,\omega)}$$

measured cross sections / asymmetries often contain "remnants" of experimental acceptance ϵ

$$\frac{N^{+}(x) - N^{-}(x)}{N^{+}(x) + N^{-}(x)} = \frac{\int d\omega \,\epsilon(x,\omega) \,\Delta\sigma(x,\omega)}{\int d\omega \,\epsilon(x,\omega) \,\sigma(x,\omega)} \neq \frac{\int d\omega \,\Delta\sigma(x,\omega)}{\int d\omega \,\sigma(x,\omega)}$$

measured cross sections / asymmetries often contain "remnants" of experimental acceptance ϵ

$$\frac{N^+(x) - N^-(x)}{N^+(x) + N^-(x)} = \frac{\int d\omega \,\epsilon(x)}{\int d\omega \,\epsilon(x)}$$

- measured cross sections / asymmetries often contain "remnants" of experimental acceptance ϵ
- difficult to evaluate precisely in absence of good physics model
 - general challenge to statistically precise data sets
 - avoid 1d binning/presentation of data
 - theorist: watch out for precise definition (if given!) of experimental results reported ... and try not to treat data points of different projections as independent

 $\frac{x,\omega)\Delta\sigma(x,\omega)}{(x,\omega)\sigma(x,\omega)} \neq A(x,\langle\omega\rangle)$

• inclusive DIS: relatively simple as only 2d (and generally weak Q² dependence)

- inclusive DIS: relatively simple as only 2d (and generally weak Q² dependence)
- SIDIS: at least 2 more variables (z, $P_{h\perp}$) dependences not necessarily trivial

- inclusive DIS: relatively simple as only 2d (and generally weak Q² dependence)
- SIDIS: at least 2 more variables $(z, P_{h\perp})$ dependences not necessarily trivial
- most TMD cross sections differential in at least 5 variables
 - some easily parametrized (e.g., azimuthal dependences), others mostly unknown

- inclusive DIS: relatively simple as only 2d (and generally weak Q² dependence)
- SIDIS: at least 2 more variables $(z, P_{h\perp})$ dependences not necessarily trivial
- most TMD cross sections differential in at least 5 variables
 - some easily parametrized (e.g., azimuthal dependences), others mostly unknown
- I-dimensional binning provide only (sometimes misleading) glimpse of true physics
 - even different kinematic bins can't disentangle underlying physics dependences
 - e.g., binning in x involves [incomplete] integration(s) over $P_{h\perp}$

- inclusive DIS: relatively simple as only 2d (and generally weak Q² dependence)
- SIDIS: at least 2 more variables (z, $P_{h\perp}$) dependences not necessarily trivial
- most TMD cross sections differential in at least 5 variables
 - some easily parametrized (e.g., azimuthal dependences), others mostly unknown
- I-dimensional binning provide only (sometimes misleading) glimpse of true physics
 - even different kinematic bins can't disentangle underlying physics dependences
 - e.g., binning in x involves [incomplete] integration(s) over $P_{h\perp}$
- further complication: physics (cross sections) folded with acceptance
 - NO experiment has flat acceptance in full multi-d kinematic space

- Why have 1d projections survived for so long?
 - faster to catch features of functional dependence
 - most prominent asymmetry was A_{LL} (or A_1)
 - viewed with "collinear monocles" thus blind for 3d effects
 - no strong dependence on hadron kinematics observed

- Why have 1d projections survived for so long?
 - faster to catch features of functional dependence
 - most prominent asymmetry was A_{LL} (or A_1)
 - viewed with "collinear monocles" thus blind for 3d effects
 - no strong dependence on hadron kinematics observed
- however, a priori this is a wrong starting point
 - TMD physics with strong dependence on hadron kinematics
 - \bullet even data for azimuthally flat A_1 can be influenced by azimuthal acceptance

- Why have 1d projections survived for so long?
 - faster to catch features of functional dependence
 - most prominent asymmetry was A_{LL} (or A_1)
 - viewed with "collinear monocles" thus blind for 3d effects
 - no strong dependence on hadron kinematics observed
- however, a priori this is a wrong starting point
 - TMD physics with strong dependence on hadron kinematics
 - even data for azimuthally flat A_1 can be influenced by azimuthal acceptance
- need to evaluate systematics due to integration over phase space => Monte Carlo Gunar Schnell

Monte Carlo simulation for TMD analyses

- early Collins and Sivers analyses used dedicated TMD single-hadron MC: gmcTRANS based on Gaussian Ansatz
 - fully analytic, but no full-blown "event generator"

Monte Carlo simulation for TMD analyses

- early Collins and Sivers analyses used dedicated TMD single-hadron MC: gmcTRANS based on Gaussian Ansatz
 - fully analytic, but no full-blown "event generator"
- adopted "polarizing" procedure for PYTHIA, introducing spin states according to model for spindependent cross section:

$$\rho < \frac{1}{2} \left[1 + \mathcal{A}_{U\perp}^{\sin(\phi - \phi_S)}(\Omega^i) \sin(\phi^i - \phi_S^i) \right] \quad \Rightarrow \quad \mathcal{P} = +1$$

$$\rho > \frac{1}{2} \left[1 + \mathcal{A}_{U\perp}^{\sin(\phi - \phi_S)}(\Omega^i) \sin(\phi^i - \phi_S^i) \right] \quad \Rightarrow \quad \mathcal{P} = -1$$

$$\text{throwing a random variable Os os 1}$$

model: fully differential Taylor series fit to HERMES data

Monte Carlo simulation for TMD analyses

- early Collins and Sivers analyses used dedicated TMD single-hadron MC: gmcTRANS based on Gaussian Ansatz
 - fully analytic, but no full-blown "event generator"
- adopted "polarizing" procedure for PYTHIA, introducing spin states according to model for spindependent cross section:

model: fully differential Taylor series fit to HERMES data -0.04 -0.06

-0.08

systematics: extracted asymmetry vs. asymmetry model evaluated at average kinematics^{0.1} Gunar Schnell

some highlights

[A. Airapetian et al., JHEP12(2020)010]

Gunar Schnell

Sivers amplitudes for pions

- high-z data probes region where contributions from exclusive vector-meson production becomes significant
- only last z bin shows indication of sizable ρ^0 contribution (decaying into charged pions)

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes pions vs. (anti)protons

similar-magnitude asymmetries for (anti)protons and pions

consequence of u-quark dominance in both cases?

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes pions vs. (anti)protons

similar-magnitude asymmetries for (anti)protons and pions consequence of u-quark dominance in both cases?

possibly, onset of target fragmentation only at lower z

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

Sivers amplitudes pions vs. (anti)protons

similar-magnitude asymmetries for (anti)protons and pions

consequence of u-quark dominance in both cases?

possibly, onset of target fragmentation only at lower z

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

• 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- 3d analysis: 4x4x4 bins in $(x, z, P_{h\perp})$
- reduced systematics
- disentangle correlations
- isolate phase-space region with large signal strength

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- 3d analysis: 4x4x4 bins in $(x,z, P_{h\perp})$
- reduced systematics
- disentangle correlations
- isolate phase-space region with large signal strength
- allows more detailed comparison with calculations

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1, h_{1T}^\perp

- 3d analysis: 4x4x4 bins in $(x, z, P_{h\perp})$
- reduced systematics
- disentangle correlations
- isolate phase-space region with large signal strength
- allows more detailed comparison with calculations
- accompanied by kinematic distribution to guide phenomenology

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

new HERMES results on Collins amplitudes

- results for (anti-)protons consistent with zero vanishing Collins effect for (spin-1/2) baryons?
- analysis now performed in 3d, both including or not including kinematic "depolarization" prefactor

Gunar Schnell

high-z region probes transition region to exclusive domain (with increasing amplitudes for positive pions and kaons) TMDs: from JLab to EIC - May 6-7, 2021 25

subleading twist $- \langle sin(\phi_s) \rangle_{UT}$

- clearly non-zero asymmetries
- opposite sign for charged pions (Collins-like behavior)
- striking z dependence and in particular magnitude
- similar observation at COMPASS

out of time ... no specific conclusions

- check carefully acceptance effects (no experiment has perfect acceptance)
 - requires very good model of physics one is after
- do not exclude data just because some MC tells you the data are bad
 - rather include as much information in addition to your main results, in particular data-driven kinematic distributions
- bin in as many dimensions as possible (best fully differential)

backup slides

subleading twist II - $\langle sin(\phi) \rangle_{LU}$ HERMES 3d analysis

Gunar Schnell

most comprehensive presentation, for discussion use 1d binning

 $\frac{M_h}{Mz}h_1^{\perp}\tilde{E} \oplus xg^{\perp}D_1 \oplus \frac{M_h}{Mz}f_1\tilde{G}^{\perp} \oplus xeH_1^{\perp}$

[arXiv:1903.08544]

[arXiv:1903.08544]

	U	L	Т
U	f_1		h_1^\perp
L		g_{1L}	h_{1L}^{\perp}
Т	f_{1T}^{\perp}	g_{1T}	h_1,h_{1T}^\perp

- chiral-odd is needs Collins FF (or similar)
- ¹H, ²H & ³He data consistently small
- cancelations? pretzelosity=zero? or just the additional suppression by two powers of $P_{h\perp}$

Pretzelosity

- chiral even, couples to D₁
- evidences from
 - ³He target at JLab
 - H target at COMPASS & HERMES

2 $\langle \cos(\phi - \phi_S) / (1 - \epsilon^2)^{1/2} \rangle_{L_{-}}$ 0.3 0.2 0.1 -0 -0.1 -0.2 -0.3 0.3 0.2 0.1 -0 -0.1 -0.2 -0.3

Gunar Schnell

Worm-Gear II

[A. Airapetian et al., JHEP12(2020)010]

Subtracting mesons from decay of excl. VM production

Multiplicity \mathbf{Q} **10**⁻¹ Q **10**⁻¹ **10⁻²** corrected uncorrected Hatio 1.4 1.2 **0.8** 0.6 1.4 **K**⁺ N 1.2 0.8 0.6 0.8 0.2 0.2 0.4 0.6 0.4 0.6 **8.0** Ζ

PHYSICAL REVIEW D 87, 074029 (2013)

Gunar Schnell

"corrected" should better read "VM subtracted"

FIG. 3 (color online). Fraction of mesons generated by the decay of exclusive vector mesons as a function of z, from PYTHIA (see text). The widths of the bands indicate the uncertainty in the corresponding fractions. The vertical dashed lines are the limits in z used in the multiplicity extractions.

inclusive hadrons: A_{UT} siny amplitude

clear left-right asymmetries for pions and positive kaons

lepton going into the plane

inclusive hadrons: $A_{UT} \sin \psi$ amplitude

clear left-right asymmetries for pions and positive kaons

• increasing with x_F (as in pp)

inclusive hadrons: $A_{UT} \sin \psi$ amplitude

clear left-right asymmetries for pions and positive kaons

• increasing with x_F (as in pp)

• initially increasing with P_T with a fall-off at larger P_T

inclusive hadrons: A_{UT} siny amplitude

clear left-right asymmetries for pions and positive kaons

• increasing with x_F (as in pp)

- initially increasing with P_T with a fall-off at larger P_T
- XF and PT correlated ► look at 2D dependences

inclusive hadrons: $A_{UT} \sin \psi$ amplitude

Gunar Schnell

X_F

