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SIDIS: probing TMD PDFs through fragmentation
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2d kinematic phase space
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Figure 7. Rapidity distributions for π+ (left) and protons (right) in the kinematic region indicated.
(Distributions are normalized to unity.)

Scattered lepton: Q2 > 1GeV2

W 2 > 10GeV2

0.023< x < 0.6
0.1< y < 0.95

Detected hadrons: 2GeV< |Ph| < 15GeV charged mesons
4GeV< |Ph| < 15GeV (anti)protons

|Ph| > 2GeV neutral pions
Ph⊥ < 2GeV

0.2< z < 0.7 (1.2 for the “semi-exclusive” region)

Table 3. Restrictions on selected kinematics variables. The upper limit on z of 1.2 applies only to
the analysis of the z dependence.

π+ π 0 π − K+ K− p p̄

0.2<z < 0.7 755k 158k 543k 136k 57k 94k 14k
0.7<z < 1.2 68k 10k 40k 14k 1k 6k <1k

Table 4. Hadron yields for the semi-inclusive DIS range and the high-z region.

photon-nucleon center-of-mass system. Both are measures of the “forwardness” of the
hadron in that system. Positive values of xF and yh are more likely associated with hadrons
produced from the struck quark, while negative values point at target fragmentation. As
an example, the rapidity distributions for π+ and protons are shown in figure 7 for a
specific kinematic bin of small z and large Ph⊥. Even though proton production is more
susceptible to contributions from target fragmentation, the proton’s rapidity remains, like
that of pions, mainly positive. Further discussion including more distributions can be found
in appendix B.

The criteria for the selection of scattered leptons and of hadrons detected in coinci-
dence are summarized in table 3. They have been chosen to ensure a good semi-inclusive
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current vs. target fragmentation

4

uud

udu
u

ud

u

ū

s

ū

d
u -d
-d

-d
d

π+

π0

π-

π0

Λ

!+

utarget 
nucleon

final-state 
hadrons

hadron 
formation

incoming / scattered 
lepton

virtual 
photon -s

u K+

SIDIS: probing PDFs through fragmentation

π+

π0
π0

π-
ΛK+

J
H
E
P
1
2
(
2
0
2
0
)
0
1
0

z

ev
en
ts
[a
rb
.u
ni
ts
]

0
0

0.2 0.4 0.6 0.8 1.0
Ph⊥ [GeV]

0
0 0.5 1.51.0

ev
en
ts
[a
rb
.u
ni
ts
]

Figure 5. Shape comparison of arbitrarily normalized π+ (red dotted line), K+ (blue line), and
proton (green dashed line) yield distributions in the hadron variables z (left) and Ph⊥ (right). The
region between the two vertical dashed lines indicates the range in z used for the semi-inclusive DIS
sample, while events in the extended range 0.7<z < 1.2 are analyzed only in the one-dimensional
z binning.

0 0.5 1 1.5 2.52
P2 [GeV2]h⊥

5

1

10

Q
2
[G
eV

2 ]

1

10

102

103

104
π+

Figure 6. Distribution in Q2 versus P 2
h⊥ of the semi-inclusive π+ yield.

hadrons with large transverse momentum might originate from the remnants of the target
and not from the fragmentation of the struck quark [100, 101], the region that is described
here in terms of TMD distribution and fragmentation functions. While no general recipe,
e.g., a quantitative limit on kinematic variables, is available, it appears appropriate to
provide additional information about the kinematic distributions in this measurement. For
this it is useful to introduce both Feynman-x, xF , the ratio of the longitudinal hadron
momentum PCM

h∥ along the virtual-photon direction to its maximum possible value in the
virtual-photon-nucleon center-of-mass system (CM), and rapidity,

yh ≡ 1
2 ln

P+
h

P−
h

, (3.1)

where P±
h are the ± light-cone momenta, i.e., ECM

h ±PCM
h∥ , of the hadron in the virtual-
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Figure 5. Shape comparison of arbitrarily normalized π+ (red dotted line), K+ (blue line), and
proton (green dashed line) yield distributions in the hadron variables z (left) and Ph⊥ (right). The
region between the two vertical dashed lines indicates the range in z used for the semi-inclusive DIS
sample, while events in the extended range 0.7<z < 1.2 are analyzed only in the one-dimensional
z binning.
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current vs. target fragmentation
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Figure 41. Distributions in xF vs. z of the K+ (left) and proton (right) yields.

Rather than explicitly applying stringent constraints on the kinematic variables, in this
work a large part of the available kinematic phase space is explored within reasonable limits
and the azimuthal modulations of interest studied in that kinematic region. In addition, in
order to facilitate interpretation of the results, kinematic distributions are provided for the
various choices of kinematic binning and hadron species. In this way, the door is open for
phenomenology to explore in more detail whether and where the factorized picture might
break down for these spin asymmetries.

The particular choice of kinematic distributions provided here are driven by the two
aspects considered in the beginning of this section, namely (i) the separation of current
and target fragmentation as studied through rapidity distributions, and (ii) the small
transverse-momentum requirement as explored by looking at both Q2 versus P 2

h⊥ and
Q2 versus P 2

h⊥/z
2.

A presentation in this paper of the distributions for all kinematic bins and hadron
species is not practical, they will hence be made available elsewhere (see supplementary
material). Instead, a selection of those are presented for the more extreme cases.

B.1 Separation of target and current fragmentation

In this measurement, hadrons were selected that have a high probability to stem from the
current fragmentation. For that a minimum z of 0.2 is required, which predominantly
selects forward-going hadrons in the virtual-photon-proton center-of-mass system, forward
being the direction of the virtual photon. This is visible in figure 41, where the correlation
between z and xF is plotted for both K+ and protons. For kaons (and likewise pions),
z > 0.2 corresponds to positive xF . The situation is slightly less favorable for protons, where
still a notable fraction of the yield in the lowest z bin falls in the category of negative xF .
This can be seen also in the rapidity distributions. They are depicted in figure 42 for the
last x bin, while those for pions are shown for the first and last x bin in figure 43. From
those distributions it is evident that the majority of events is at forward rapidity. Only
a small fraction of events, mainly in the case of protons, populates the region of negative
rapidity and do so only for large Ph⊥ and small z. Furthermore, clearly visible in the π+

– 62 –

xF … Feynman x
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current vs. target fragmentation
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TMD factorization: a 2-scale problem

TMD factorization requires a large scale (Q2) 
and small transverse momentum 

overall, Q mainly larger than Ph⊥  

not fulfilled in all kinematic bins 

more challenging, especially at low x (=low Q2), 
for more stringent constraint of zQ >> Ph⊥
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TMD factorization: a 2-scale problem

Q2 = P2h⊥ 
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TMD factorization: a 2-scale problem

Q2 = P2h⊥ 
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TMD factorization: a 2-scale problem

Q2 = P2h⊥  

Q2 = 2 P2h⊥ 

Q2 = 4 P2h⊥
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TMD factorization: a 2-scale problem

Q2 = P2h⊥/z2 

Q2 = 2 P2h⊥/z2 

Q2 = 4 P2h⊥/z2
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TMD factorization: a 2-scale problem

Q2 = P2h⊥/z2 
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Mixing of target polarizations
theory done w.r.t. virtual-photon direction

experiments use targets polarized w.r.t. lepton-beam direction
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tion w.r.t. Beam Direction (l)!
Theory: Polarization along virtual photon di-
rection (q)
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asymmetries via:
[Diehl and Sapeta, Eur. Phys. J. C41 (2005)]
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Mixing of target polarizations
theory done w.r.t. virtual-photon direction

experiments use targets polarized w.r.t. lepton-beam direction

➡  mixing of longitudinal and transverse polarization effects 
[Diehl & Sapeta, EPJ C 41 (2005) 515], e.g., 
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➡  need data on same target for both polarization orientations!
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Mixing of target polarizations
theory done w.r.t. virtual-photon direction 

experiments use targets polarized w.r.t. lepton-beam direction 

➡  mixing of longitudinal and transverse polarization effects 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detector effects — need for multi-d analyses

measured cross sections / asymmetries often contain “remnants” of experimental 
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detector effects — need for multi-d analyses

measured cross sections / asymmetries often contain “remnants” of experimental 
acceptance 𝝐

difficult to evaluate precisely in absence of good physics model  

general challenge to statistically precise data sets 

avoid 1d binning/presentation of data  

theorist: watch out for precise definition (if given!) of experimental results 
reported ... and try not to treat data points of different projections as independent 
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inclusive DIS: relatively simple as only 2d (and generally weak Q2 dependence)

SIDIS: at least 2 more variables (z, Ph⊥) — dependences not necessarily trivial

most TMD cross sections differential in at least 5 variables  

some easily parametrized (e.g., azimuthal dependences), others mostly unknown 

1-dimensional binning provide only (sometimes misleading) glimpse of true physics  

even different kinematic bins can’t disentangle underlying physics dependences  

e.g., binning in x involves [incomplete] integration(s) over Ph⊥ 

further complication: physics (cross sections) folded with acceptance  

NO experiment has flat acceptance in full multi-d kinematic space 
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detector effects — need for multi-d analyses

Why have 1d projections survived for so long? 

faster to catch features of functional dependence 

most prominent asymmetry was ALL (or A1) 

viewed with “collinear monocles” - thus blind for 3d effects 

no strong dependence on hadron kinematics observed 

16

CPHI-2020Gunar Schnell 

A ,p
π+

- 0.1

0

0.1

0.2

0.3
0.023 < x < 0.055
0.055 < x < 0.100
0.100 < x < 0.600

A ,d
π+ A ,d

K+

A ,p
π -

0.2 0.4 0.6 0.8

- 0.1

0

0.1

0.2

0.3 A ,d
π -

0.2 0.4 0.6 0.8

A ,d
K-

0.2 0.4 0.6 0.8
Ph⊥[GeV ]

25

Ph⊥ dependence of A|| (three x ranges)

[arXiv:1810.07054]

0.023 < x < 0.055

linear in  x
     order in x and Ph⊥

A1,d
π +

0

0.2

0.055 < x < 0.100

0

0.2

0.100 < x < 0.600

0.0 0.2 0.4 0.6 0.8 1.0

0

0.2

Ph⊥ GeV]

nd2 

[

again, no strong dependence (beyond on x)

also fit to A1 fit does not favor an 
additional dependence on Ph⊥

[HERMES, PRD 99 (2019) 112001]



TMDs: from JLab to EIC - May 6-7, 2021Gunar Schnell 

detector effects — need for multi-d analyses

Why have 1d projections survived for so long? 

faster to catch features of functional dependence 

most prominent asymmetry was ALL (or A1) 

viewed with “collinear monocles” - thus blind for 3d effects 

no strong dependence on hadron kinematics observed 

however, a priori this is a wrong starting point 

TMD physics with strong dependence on hadron kinematics 

even data for azimuthally flat A1 can be influenced by azimuthal acceptance
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detector effects — need for multi-d analyses

Why have 1d projections survived for so long? 

faster to catch features of functional dependence 

most prominent asymmetry was ALL (or A1) 

viewed with “collinear monocles” - thus blind for 3d effects 

no strong dependence on hadron kinematics observed 

however, a priori this is a wrong starting point 

TMD physics with strong dependence on hadron kinematics 

even data for azimuthally flat A1 can be influenced by azimuthal acceptance

need to evaluate systematics due to integration over phase space => Monte Carlo  
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Monte Carlo simulation for TMD analyses
early Collins and Sivers analyses used dedicated 
TMD single-hadron MC: gmcTRANS  based on 
Gaussian Ansatz 

fully analytic, but no full-blown “event generator”  
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Figure 5.2.4: The implemented and extracted asymmetry amplitudes (upper

half) and the differences between implemented and extracted

amplitudes (lower half) for generated and reconstructed negative

pion events. The generated events cover the whole range of the

solid angle.
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Monte Carlo simulation for TMD analyses
early Collins and Sivers analyses used dedicated 
TMD single-hadron MC: gmcTRANS  based on 
Gaussian Ansatz 

fully analytic, but no full-blown “event generator”  

adopted “polarizing” procedure for PYTHIA, 
introducing spin states according to model for spin-
dependent cross section:  
 
 
 
throwing a random variable 0<𝝆<1 

model: fully differential Taylor series fit to 
HERMES data  
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the Fourier amplitudes extracted. A rigorous analysis procedure involves a fully differential
unfolding as done, e.g., for the HERMES measurement of the cosine modulations in the
polarization-averaged semi-inclusive deep-inelastic scattering cross section [32]. Here, the
limited number of events precludes an unfolding in six dimensions. However, being effec-
tively an asymmetry measurement results in various approximate cancelations of detector
effects. Nevertheless, even though the angular Fourier decomposition uses a maximum-
likelihood fit unbinned in the azimuthal angles, the limited instrumental acceptance in the
remaining kinematic variables can still influence the measurement [106], especially if not
performed differential in all the remaining kinematic variables.

Monte Carlo simulations of both the underlying physics as well as of the detector
response have become a vital tool for evaluating such systematic effects. The basis for
those is a reliable modeling of the experimental setup but also realistic simulations of
the physics processes. The measurements presented here enter a territory for which the
latter are scarce, mainly due to a lack of knowledge about the various TMDs. Several
dedicated physics generators have become available, but none that covers all the TMDs
and modulations examined here.

The approach chosen in this analysis makes use of an already very good description
of the spin-independent semi-inclusive deep-inelastic scattering cross section provided by
Pythia6.2 [96, 97]. Pythia6.2 events come with event weights equal to unity and are
hence easy to reshuffle. This is exploited to introduce spin dependence into the otherwise
spin-independent event generator [106, 183, 184]. A polarization state P is assigned to
each event i based on a model of the spin asymmetry of interest, e.g.,

ρ<
1
2

[
1+Asin(φ−φS)

U⊥ (Ωi)sin(φi−φi
S)

]
⇒ P =+1 (C.1)

ρ>
1
2

[
1+Asin(φ−φS)

U⊥ (Ωi)sin(φi−φi
S)

]
⇒ P =−1 (C.2)

in case of the Sivers Fourier amplitude, by throwing a random variable 0< ρ< 1. Here,
(Ωi,φi,φi

S) are the fully differential true kinematics for that particular event and Asin(φ−φS)
U⊥

is a suitable parameterization for the Sivers modulation. In the specific analysis, eqs. (C.1)
and (C.2) are to include all ten azimuthal modulations including the double-spin asymme-
tries. Virtually any parameterization of the spin dependence can be implemented (as long
as fulfilling positivity constraints) without limiting oneself to, e.g., the Gaussian Ansatz
for the transverse-momentum dependence. In addition, the full event will remain avail-
able, which allows a more thorough study of systematics due to event-topology-dependent
detector responses.

Given the scant availability of parameterizations for all modulations studied here, a
data-driven approach is employed. An approximate model of reality is obtained by expand-
ing the various Fourier amplitudes measured in a Taylor series in all kinematic variables.
A maximum-likelihood fit is employed to extract the coefficients of the fully differential
(though truncated) Taylor series for every single azimuthal amplitude appearing in the
cross section and for every hadron type. These parameterizations are then used to assign
spin states to the Pythia6.2 Monte Carlo simulation — augmented with RadGen [107] to
account for QED radiative effects and passed through a Geant3 [108] description of the
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Figure 48. Left: comparison of the HERMES data for charged-pion Collins SFA amplitudes with
the fully differential model of those evaluated at the average kinematics of each bin. The dashed
curve (red) uses the model based on data in the standard 0.2<z < 0.7 range, while the solid line
(blue) includes also the high-z data. Right: comparison of the fully differential models evaluated
at the average kinematics of each bin with the fully reconstructed “polarized Pythia6.2” simula-
tion (in HERMES acceptance) based on those models. The difference is assigned as systematic
uncertainty and shown as uncertainty bands at the bottom of each panel.

using the average, ⟨Mπ±⟩, of the π± multiplicities [98].
Figures 48 (right) and 49 illustrate the subsequent extraction of systematic uncertain-

ties. The “polarized Pythia6.2” events were tracked through a realistic simulation of the
experiment and analyzed in the same way as normal experimental data. The reconstructed
asymmetry amplitudes are compared to the parameterizations evaluated at the mean re-
constructed kinematics of each data point, i.e., in each experimental bin. (This is the same
as how the data are usually used in phenomenological fits, e.g., interpreted as the true value
of the observable for the average kinematics given alongside.) In each kinematic bin, the
difference of the reconstructed Monte Carlo asymmetries and the parameterization, e.g.,

δsys (2⟨sin(φ−φS)⟩U⊥) ≡ | 2⟨sin(φ−φS)⟩MC
U⊥ −Asin(φ−φS)

U⊥ (⟨Ω⟩bin) | (C.5)

stems from detector effects including smearing, but more importantly from the integration
over kinematic variables, and is assigned as the corresponding systematic uncertainty.

It is worthwhile to highlight that the difference of an average asymmetry in a bin
and the asymmetry value at the average kinematics of that bin strongly depends on the
non-linearity of the asymmetry and the kinematic region integrated over. That makes the
one-dimensional projections much more susceptible to acceptance effects than the three-
dimensional data presented as the main results in this analysis.
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Monte Carlo simulation for TMD analyses
early Collins and Sivers analyses used dedicated 
TMD single-hadron MC: gmcTRANS  based on 
Gaussian Ansatz 

fully analytic, but no full-blown “event generator”  

adopted “polarizing” procedure for PYTHIA, 
introducing spin states according to model for spin-
dependent cross section:  
 
 
 
throwing a random variable 0<𝝆<1 

model: fully differential Taylor series fit to 
HERMES data  

systematics: extracted asymmetry vs. asymmetry 
model evaluated at average kinematics 
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the Fourier amplitudes extracted. A rigorous analysis procedure involves a fully differential
unfolding as done, e.g., for the HERMES measurement of the cosine modulations in the
polarization-averaged semi-inclusive deep-inelastic scattering cross section [32]. Here, the
limited number of events precludes an unfolding in six dimensions. However, being effec-
tively an asymmetry measurement results in various approximate cancelations of detector
effects. Nevertheless, even though the angular Fourier decomposition uses a maximum-
likelihood fit unbinned in the azimuthal angles, the limited instrumental acceptance in the
remaining kinematic variables can still influence the measurement [106], especially if not
performed differential in all the remaining kinematic variables.

Monte Carlo simulations of both the underlying physics as well as of the detector
response have become a vital tool for evaluating such systematic effects. The basis for
those is a reliable modeling of the experimental setup but also realistic simulations of
the physics processes. The measurements presented here enter a territory for which the
latter are scarce, mainly due to a lack of knowledge about the various TMDs. Several
dedicated physics generators have become available, but none that covers all the TMDs
and modulations examined here.

The approach chosen in this analysis makes use of an already very good description
of the spin-independent semi-inclusive deep-inelastic scattering cross section provided by
Pythia6.2 [96, 97]. Pythia6.2 events come with event weights equal to unity and are
hence easy to reshuffle. This is exploited to introduce spin dependence into the otherwise
spin-independent event generator [106, 183, 184]. A polarization state P is assigned to
each event i based on a model of the spin asymmetry of interest, e.g.,

ρ<
1
2

[
1+Asin(φ−φS)

U⊥ (Ωi)sin(φi−φi
S)

]
⇒ P =+1 (C.1)

ρ>
1
2

[
1+Asin(φ−φS)

U⊥ (Ωi)sin(φi−φi
S)

]
⇒ P =−1 (C.2)

in case of the Sivers Fourier amplitude, by throwing a random variable 0< ρ< 1. Here,
(Ωi,φi,φi

S) are the fully differential true kinematics for that particular event and Asin(φ−φS)
U⊥

is a suitable parameterization for the Sivers modulation. In the specific analysis, eqs. (C.1)
and (C.2) are to include all ten azimuthal modulations including the double-spin asymme-
tries. Virtually any parameterization of the spin dependence can be implemented (as long
as fulfilling positivity constraints) without limiting oneself to, e.g., the Gaussian Ansatz
for the transverse-momentum dependence. In addition, the full event will remain avail-
able, which allows a more thorough study of systematics due to event-topology-dependent
detector responses.

Given the scant availability of parameterizations for all modulations studied here, a
data-driven approach is employed. An approximate model of reality is obtained by expand-
ing the various Fourier amplitudes measured in a Taylor series in all kinematic variables.
A maximum-likelihood fit is employed to extract the coefficients of the fully differential
(though truncated) Taylor series for every single azimuthal amplitude appearing in the
cross section and for every hadron type. These parameterizations are then used to assign
spin states to the Pythia6.2 Monte Carlo simulation — augmented with RadGen [107] to
account for QED radiative effects and passed through a Geant3 [108] description of the
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Figure 48. Left: comparison of the HERMES data for charged-pion Collins SFA amplitudes with
the fully differential model of those evaluated at the average kinematics of each bin. The dashed
curve (red) uses the model based on data in the standard 0.2<z < 0.7 range, while the solid line
(blue) includes also the high-z data. Right: comparison of the fully differential models evaluated
at the average kinematics of each bin with the fully reconstructed “polarized Pythia6.2” simula-
tion (in HERMES acceptance) based on those models. The difference is assigned as systematic
uncertainty and shown as uncertainty bands at the bottom of each panel.

using the average, ⟨Mπ±⟩, of the π± multiplicities [98].
Figures 48 (right) and 49 illustrate the subsequent extraction of systematic uncertain-

ties. The “polarized Pythia6.2” events were tracked through a realistic simulation of the
experiment and analyzed in the same way as normal experimental data. The reconstructed
asymmetry amplitudes are compared to the parameterizations evaluated at the mean re-
constructed kinematics of each data point, i.e., in each experimental bin. (This is the same
as how the data are usually used in phenomenological fits, e.g., interpreted as the true value
of the observable for the average kinematics given alongside.) In each kinematic bin, the
difference of the reconstructed Monte Carlo asymmetries and the parameterization, e.g.,

δsys (2⟨sin(φ−φS)⟩U⊥) ≡ | 2⟨sin(φ−φS)⟩MC
U⊥ −Asin(φ−φS)

U⊥ (⟨Ω⟩bin) | (C.5)

stems from detector effects including smearing, but more importantly from the integration
over kinematic variables, and is assigned as the corresponding systematic uncertainty.

It is worthwhile to highlight that the difference of an average asymmetry in a bin
and the asymmetry value at the average kinematics of that bin strongly depends on the
non-linearity of the asymmetry and the kinematic region integrated over. That makes the
one-dimensional projections much more susceptible to acceptance effects than the three-
dimensional data presented as the main results in this analysis.

– 71 –



some highlights



TMDs: from JLab to EIC - May 6-7, 2021Gunar Schnell 

Sivers amplitudes for pions

high-z data probes region where contributions 
from exclusive vector-meson production 
becomes significant 

only last z bin shows indication of sizable 𝝆0 
contribution (decaying into charged pions)

19

quark pol.

U L T

nu
cl

eo
n

po
l.

U f1 h�1

L g1L h�1L

T f�1T g1T h1, h�1T

Twist-2 TMDs

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

π+

2
 〈

s
in

(φ
-φ

S
)〉

U
⊥

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.1 0.2

π-

x
0.5 1

z
0 0.5 1

Ph⊥ [GeV]

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

K
+

2
 〈

s
in

(φ
-φ

S
)〉

U
⊥

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

0.1 0.2

K
-

x
0.5 1

z
0 0.5 1

Ph⊥ [GeV]

Figure 12. Sivers SFA for charged mesons (left: pions; right: kaons) presented either in bins of x,
z, or Ph?. Data at large values of z, marked by open points in the z projection, are not included
in the other projections. Systematic uncertainties are given as bands, not including the additional
scale uncertainty of 7.3% due to the precision of the target-polarization determination.

zero even at the lowest x values probed in this experiment. The rise with z and Ph? is
much more pronounced. However, while the rise continues throughout the semi-inclusive z

range, it is leveling off at larger values of Ph?.
The ⇡

� Sivers asymmetry in the one-dimensional x projection is consistent with zero.
While ⇡

+ electroproduction off protons is dominated by up-quark scattering, ⇡� receives
large contributions from down quarks. The vanishing Sivers asymmetry for negative pions
can thus be understood as a cancelation of a Sivers effect that is opposite in sign for up and
down quarks. This may also explain the peculiar behavior of the z dependence: at low values
of z disfavored fragmentation plays a significant role and thus contributions from up quarks
can push the asymmetry towards positive values. At large values of z, however, disfavored
fragmentation dies out and the favored production off down quarks prevails leading to a
negative asymmetry. Some caution with this argumentation is deserved as at large values of
z, the contribution from the decay of exclusive ⇢

0 electroproduction to both the ⇡
+ and ⇡

�

samples becomes sizable, as can be concluded from a Pythia6.2 Monte Carlo simulation
(cf. figure 4), even more so for ⇡� than for ⇡+. Charge-conjugation dictates that the decay
pions from the ⇢

0 exhibit the same asymmetry regardless of their charge.v Examining
the large-z behavior of the charged-pion asymmetries, indeed a clear change of trend can
be observed for positive pions. Still, the significant difference between the charged-pion
asymmetries over most of the kinematic range suggests that the non-vanishing asymmetries
observed are not driven merely by exclusive ⇢

0 electroproduction.
The K

+ Sivers asymmetry follows a similar kinematic behavior as the one for ⇡
+,

but is larger in magnitude, as can be seen in figure 13. While u-quark scattering should
dominate production off protons of both positive pions and kaons, various differences be-

vThis is also one motivation for looking at the charge-difference asymmetry in ref. [40] in which such
contributions cancel.
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Figure 14. Sivers SFA for ⇡
0 presented either in bins of x, z, or Ph?. Data at large values of z,

marked by open points in the z projection, are not included in the other projections. Systematic
uncertainties are given as bands, not including the additional scale uncertainty of 7.3% due to the
precision of the target-polarization determination.

As is the case for K
�, the ⇡

0 results, presented in figure 14, have poor statistical
precision but still indicate a positive asymmetry. This can be expected from the results for
charged pions due to isospin symmetry in semi-inclusive deep-inelastic scattering. In the
high-z range, the ⇡

0 asymmetries remain positive around 5–10%, thus not following the
strongly falling trend of the ⇡

+ asymmetries. Also here the contribution from exclusive
vector-meson production is much smaller than for ⇡+ (cf. figure 4); thus, an interpretation
in terms of ordinary fragmentation is likely much more applicable, leading to a positive
asymmetry due to u-quark dominance.

Figure 15 shows, as an illustrative example, the Sivers asymmetry for ⇡
+ mesons in

the three-dimensional binning, compared to a phenomenological fit [147]. The latter, being
based on previous versions of these data (as well as data from COMPASS), describes the
overall behavior well. The multi-dimensional binning as well as the much reduced system-
atics of the data presented here should help to better constrain future phenomenological
analyses.

In figure 16, the first measurement of Sivers asymmetries for proton and antiprotons is
presented. A clearly positive Sivers asymmetry is observed for protons. Also the less precise
antiproton data favor a positive Sivers asymmetry. Baryon production is a less understood
process at lower center-of-mass energies. Therefore, care must be taken when interpreting
those in the usual factorized way. Leaving this warning aside and assuming quark fragmen-
tation as the dominant process here, u-quark fragmentation prevails proton production,
and — having no valence quark in common with the target proton — antiprotons as well
are likely to originate from u-quarks, in particular at these values of x, where sea quarks
are still scarce in the target proton. Dominance of u-quarks in proton and antiproton lep-
toproduction is supported by results from global fits of fragmentation functions [159]. The
Sivers effect is sometimes referred to as a “quark-jet effect”, e.g., already before forming
the final hadron, the transverse-momentum distribution of the fragmenting quark exhibits
the Sivers signature of a left-right asymmetry with respect to the direction of the target
polarization. It is thus natural to expect similar asymmetries for “current-fragmentation”
protons and antiprotons as those for the other hadrons whose electroproduction off the

– 37 –

0

0.1

0.2

0.3

0.4

0.5

0.6

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
z

N
π VM

  /
 N

π

π+

π0

π-

Figure 4. The simulated fraction of pions originating from diffractive vector-meson production and
decay is shown as a function of z. (The open squares indicating ⇡

� are slightly shifted horizontally).
The contributions are simulated by a version of Pythia6.2 [90, 91] tuned for HERMES kinematics.
By limiting z to z < 0.7, a kinematic region is probed where the vector-meson contribution to the
electroproduction of pions is suppressed, in particular for charged pions. For charged kaons, the
contribution from � decay is at maximum 10% [92].

criteria:

(i) All identified hadrons are selected (and not only the leading hadron, i.e., the one with
the highest momentum in the event).

(ii) A lower limit z > 0.2 is applied to suppress contributions from the target fragmenta-
tion region.

(iii) An upper limit z < 0.7 is generally applied to suppress contributions from hadrons
originating from the decay of diffractively produced vector-mesons. As shown in
figure 4, contributions due to exclusive channels (in particular for charged pions)
become sizable at large z. However, when looking at only the one-dimensional z

dependence of the azimuthal asymmetries, this requirement is lifted and instead an
upper limit of 1.2 (driven by the detector resolution) is imposed, in order to probe this
“semi-exclusive” transition region. The resulting yield distributions for the positively
charged hadrons are shown in figure 5 (left). The shift towards higher z in the
distribution of protons mainly results from the larger hadron mass and the 4 GeV
minimum-momentum requirement (compared to 2 GeV for charged mesons).

(iv) The formalism of TMD factorization involves one hard scale, Q
2, and transverse

momenta that are small in comparison. While no lower limit on Ph? is imposed,
an upper limit of Ph? < 2 GeV is applied in this analysis (cf. figure 5, right). On
average, the constraint P 2

h? ⌧ Q
2 is fulfilled for most deep-inelastic scattering events

(cf. figure 6), while the stricter constraint P 2
h? ⌧ z

2
Q

2 is often violated at large Ph?
in the kinematic region of low x (which corresponds to low Q

2) and low z.l

lA more detailed discussion is presented in appendix B, including further distributions, e.g., for the more
critical region of low z and Q 2.
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Figure 16. Sivers SFA for protons (upper row) and antiprotons (lower row) presented either in
bins of x, z, or Ph?. Data at large values of z, marked by open points in the z projection, are
not included in the other projections (no such high-z points are available for antiprotons due to a
lack of precision). Systematic uncertainties are given as bands, not including the additional scale
uncertainty of 7.3% due to the precision of the target-polarization determination.
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Figure 17. Comparison of Sivers SFA for positive pions and protons (upper plot) or antiprotons
(lower plot) presented either in bins of x, z, or Ph?. Data at large values of z, marked by open
points in the z projection, are not included in the other projections (no such high-z points are
available for antiprotons due to a lack of precision). Systematic uncertainties are given as bands,
not including the additional scale uncertainty of 7.3% due to the precision of the target-polarization
determination.
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Figure 16. Sivers SFA for protons (upper row) and antiprotons (lower row) presented either in
bins of x, z, or Ph?. Data at large values of z, marked by open points in the z projection, are
not included in the other projections (no such high-z points are available for antiprotons due to a
lack of precision). Systematic uncertainties are given as bands, not including the additional scale
uncertainty of 7.3% due to the precision of the target-polarization determination.
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Figure 17. Comparison of Sivers SFA for positive pions and protons (upper plot) or antiprotons
(lower plot) presented either in bins of x, z, or Ph?. Data at large values of z, marked by open
points in the z projection, are not included in the other projections (no such high-z points are
available for antiprotons due to a lack of precision). Systematic uncertainties are given as bands,
not including the additional scale uncertainty of 7.3% due to the precision of the target-polarization
determination.
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boundaries for the semi-inclusive DIS range are marked by dashed lines. The ratio exhibits a
clear rise towards very low z, which might indicate the onset of significant target-fragmentation
contributions, excluded in the data sample used by the minimum-z requirement of 0.2.

scattering, which exhibits a positive Sivers asymmetry. The recoiling target fragments
are thus expected to exhibit a Sivers asymmetry of opposite sign. As the proton Sivers
asymmetry is positive, it appears less likely that those protons came from the fragmenting
target. All these features are, however, also not sufficient to establish that the protons and
antiprotons are dominantly produced in the hadronization of the current-quark jet, which
needs to be kept in mind when interpreting the results in such framework.

4.3 The vanishing signals for the pretzelosity function

The chiral-odd pretzelosity distribution, h?,q
1T

�
x,p2

T

�
, provides information about the non-

spherical shape of transversely polarized protons in momentum space caused by significant
contributions from orbital angular momentum to a quadrupole modulation of the parton
distributions [50]. It can be accessed coupled to the chiral-odd Collins fragmentation func-
tion in semi-inclusive deep-inelastic scattering through the sin (3�� �S) modulation of the
cross section. So far, only the measurement of this amplitude using a transversely polar-
ized 3He target by the Jefferson Lab Hall A Collaboration has been published [53]. In a
combination with preliminary data from both the COMPASS and HERMES collabora-
tions as well as the Collins fragmentation function from a phenomenological analysis [106],
h
?,q
1T

�
x,p2

T

�
was extracted both for up and down quarks and found to be consistent with

zero albeit within large uncertainties [161].
The underlying transverse-momentum convolution in eq. (2.7) involves a weight that

is expected to scale with P
3
h?. As relatively low transverse momenta are observed, hPh?i <

1 GeV, the amplitude of the sin (3�� �S) modulation is suppressed with respect to, e.g.,
the Collins amplitude, which also involves a convolution of a chiral-odd parton distribution
with the Collins fragmentation function, but which scales with Ph?.

In this analysis, the 2hsin (3�� �S)/✏ ihU? amplitudes, shown in figure 19 for charged
mesons and in figure 20 for neutral pions as well as for (anti)protons, are found to be
consistent with zero. There is a hint of a small negative amplitude for negative pions that
is, however, statistically not sufficiently significant to claim a non-vanishing pretzelosity.

As noted before, the pretzelosity amplitudes are expected to be suppressed. Cance-
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Figure 16. Sivers SFA for protons (upper row) and antiprotons (lower row) presented either in
bins of x, z, or Ph?. Data at large values of z, marked by open points in the z projection, are
not included in the other projections (no such high-z points are available for antiprotons due to a
lack of precision). Systematic uncertainties are given as bands, not including the additional scale
uncertainty of 7.3% due to the precision of the target-polarization determination.
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Figure 17. Comparison of Sivers SFA for positive pions and protons (upper plot) or antiprotons
(lower plot) presented either in bins of x, z, or Ph?. Data at large values of z, marked by open
points in the z projection, are not included in the other projections (no such high-z points are
available for antiprotons due to a lack of precision). Systematic uncertainties are given as bands,
not including the additional scale uncertainty of 7.3% due to the precision of the target-polarization
determination.
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Figure 15. Sivers SFA for ⇡
+ extracted simultaneously in bins of x, z, and Ph?, presented as

a function of x. Systematic uncertainties are given as bands, not including the additional scale
uncertainty of 7.3% due to the precision of the target-polarization determination. Overlaid is a
phenomenological fit [147] to previously available data, with the three lines corresponding to the
central value of the fit and the fit uncertainty.

proton is dominated by u-quark scattering [160]. Figure 17 compares the Sivers asymme-
tries for both protons and antiprotons with those for positive pions. Within the available
precision an almost surprising agreement of proton and ⇡

+ asymmetries is visible. Also the
asymmetries for antiprotons are very similar, however, the present measurement is plagued
by large uncertainties.

In order to investigate slightly more the nature of proton and antiproton production
at HERMES, figure 18 depicts the ratio of their raw production rates, e.g., yields not
corrected for instrumental effects. The sudden increase of the proton-over-antiproton ratio
towards very low z might indicate the onset of target fragmentation, while in most of the z

range studied here the ratio exhibits a behavior consistent with current fragmentation. In
particular, with increasing z the production of antiprotons, which have no valence quarks in
common with the target nucleons, is increasingly suppressed compared to protons. A second
qualitative argument supporting the hypothesis of dominance of current fragmentation is
the sign of the Sivers asymmetry for protons. The current jet is dominated by u-quark
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Figure 15. Sivers SFA for ⇡
+ extracted simultaneously in bins of x, z, and Ph?, presented as

a function of x. Systematic uncertainties are given as bands, not including the additional scale
uncertainty of 7.3% due to the precision of the target-polarization determination. Overlaid is a
phenomenological fit [147] to previously available data, with the three lines corresponding to the
central value of the fit and the fit uncertainty.

proton is dominated by u-quark scattering [160]. Figure 17 compares the Sivers asymme-
tries for both protons and antiprotons with those for positive pions. Within the available
precision an almost surprising agreement of proton and ⇡

+ asymmetries is visible. Also the
asymmetries for antiprotons are very similar, however, the present measurement is plagued
by large uncertainties.

In order to investigate slightly more the nature of proton and antiproton production
at HERMES, figure 18 depicts the ratio of their raw production rates, e.g., yields not
corrected for instrumental effects. The sudden increase of the proton-over-antiproton ratio
towards very low z might indicate the onset of target fragmentation, while in most of the z

range studied here the ratio exhibits a behavior consistent with current fragmentation. In
particular, with increasing z the production of antiprotons, which have no valence quarks in
common with the target nucleons, is increasingly suppressed compared to protons. A second
qualitative argument supporting the hypothesis of dominance of current fragmentation is
the sign of the Sivers asymmetry for protons. The current jet is dominated by u-quark
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phenomenological fit [147] to previously available data, with the three lines corresponding to the
central value of the fit and the fit uncertainty.
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tries for both protons and antiprotons with those for positive pions. Within the available
precision an almost surprising agreement of proton and ⇡

+ asymmetries is visible. Also the
asymmetries for antiprotons are very similar, however, the present measurement is plagued
by large uncertainties.

In order to investigate slightly more the nature of proton and antiproton production
at HERMES, figure 18 depicts the ratio of their raw production rates, e.g., yields not
corrected for instrumental effects. The sudden increase of the proton-over-antiproton ratio
towards very low z might indicate the onset of target fragmentation, while in most of the z

range studied here the ratio exhibits a behavior consistent with current fragmentation. In
particular, with increasing z the production of antiprotons, which have no valence quarks in
common with the target nucleons, is increasingly suppressed compared to protons. A second
qualitative argument supporting the hypothesis of dominance of current fragmentation is
the sign of the Sivers asymmetry for protons. The current jet is dominated by u-quark
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phenomenological fit [147] to previously available data, with the three lines corresponding to the
central value of the fit and the fit uncertainty.

proton is dominated by u-quark scattering [160]. Figure 17 compares the Sivers asymme-
tries for both protons and antiprotons with those for positive pions. Within the available
precision an almost surprising agreement of proton and ⇡

+ asymmetries is visible. Also the
asymmetries for antiprotons are very similar, however, the present measurement is plagued
by large uncertainties.

In order to investigate slightly more the nature of proton and antiproton production
at HERMES, figure 18 depicts the ratio of their raw production rates, e.g., yields not
corrected for instrumental effects. The sudden increase of the proton-over-antiproton ratio
towards very low z might indicate the onset of target fragmentation, while in most of the z

range studied here the ratio exhibits a behavior consistent with current fragmentation. In
particular, with increasing z the production of antiprotons, which have no valence quarks in
common with the target nucleons, is increasingly suppressed compared to protons. A second
qualitative argument supporting the hypothesis of dominance of current fragmentation is
the sign of the Sivers asymmetry for protons. The current jet is dominated by u-quark
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Figure 15. Sivers SFA for ⇡
+ extracted simultaneously in bins of x, z, and Ph?, presented as

a function of x. Systematic uncertainties are given as bands, not including the additional scale
uncertainty of 7.3% due to the precision of the target-polarization determination. Overlaid is a
phenomenological fit [147] to previously available data, with the three lines corresponding to the
central value of the fit and the fit uncertainty.

proton is dominated by u-quark scattering [160]. Figure 17 compares the Sivers asymme-
tries for both protons and antiprotons with those for positive pions. Within the available
precision an almost surprising agreement of proton and ⇡

+ asymmetries is visible. Also the
asymmetries for antiprotons are very similar, however, the present measurement is plagued
by large uncertainties.

In order to investigate slightly more the nature of proton and antiproton production
at HERMES, figure 18 depicts the ratio of their raw production rates, e.g., yields not
corrected for instrumental effects. The sudden increase of the proton-over-antiproton ratio
towards very low z might indicate the onset of target fragmentation, while in most of the z

range studied here the ratio exhibits a behavior consistent with current fragmentation. In
particular, with increasing z the production of antiprotons, which have no valence quarks in
common with the target nucleons, is increasingly suppressed compared to protons. A second
qualitative argument supporting the hypothesis of dominance of current fragmentation is
the sign of the Sivers asymmetry for protons. The current jet is dominated by u-quark

– 38 –

[A. Airapetian et al., JHEP12(2020)010]



TMDs: from JLab to EIC - May 6-7, 2021Gunar Schnell 

new HERMES results on Collins amplitudes 

24

quark pol.

U L T

nu
cl

eo
n

po
l.

U f1 h�1

L g1L h�1L

T f�1T g1T h1, h�1T

Twist-2 TMDs

-0.2

-0.1

0

0.1

0.2

π-

0.00 < Ph⊥ [GeV] < 0.23

2
 〈

s
in

(φ
+

φ
S
) 

/ 
ε〉

U
⊥

0.23 < Ph⊥ [GeV] < 0.36 0.36 < Ph⊥ [GeV] < 0.54 0.54 < Ph⊥ [GeV] < 2.00

0
.0

2
3
 <

 x
 <

 0
.0

7
2

-0.2

-0.1

0

0.1

0.2

0
.0

7
2
 <

 x
 <

 0
.0

9
8

-0.2

-0.1

0

0.1

0.2

0
.0

9
8
 <

 x
 <

 0
.1

3
8

-0.2

-0.1

0

0.1

0.2

0.25 0.5 0.25 0.5 0.25 0.5 0.25 0.5

0
.1

3
8
 <

 x
 <

 0
.6

0
0

z

Figure 10. Collins SFA for ⇡
� extracted simultaneously in bins of x, z, and Ph?, presented as

a function of z. Systematic uncertainties are given as bands, not including the additional scale
uncertainty of 7.3% due to the precision of the target-polarization determination.

-0.2
-0.15
-0.1
-0.05
-0

0.05
0.1
0.15
0.2

0.1 0.2

π0

x

2
〈s
in
(φ
+φ

S)
/ε

〉 U
⊥

0.5 1 0 0.5 1
z Ph⊥ [GeV]

-0.2

-0.15

-0.1

-0.05

-0

0.05

0.1

0.15

0.2
p

2
 〈

s
in

(φ
+

φ
S
) 

/ 
ε〉

U
⊥

-0.4

-0.3

-0.2

-0.1

-0

0.1

0.2

0.3

0.4

0.1 0.2

p
–

x
0.5 1

z
0 0.5 1

Ph⊥ [GeV]

Figure 11. Collins SFA for ⇡ 0 (left), protons, and antiprotons (right) presented either in bins of x,
z, or Ph?. Data at large values of z, marked by open points in the z projection, are not included in
the other projections (no such high-z points are available for antiprotons due to a lack of precision).
Systematic uncertainties are given as bands, not including the additional scale uncertainty of 7.3%
due to the precision of the target-polarization determination.
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a function of z. Systematic uncertainties are given as bands, not including the additional scale
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Figure 8. Collins SFA for charged mesons (left: pions; right: kaons) presented either in bins of x,
z, or Ph?. Data at large values of z, marked by open points in the z projection, are not included
in the other projections. Systematic uncertainties are given as bands, not including the additional
scale uncertainty of 7.3% due to the precision of the target-polarization determination.

scales, the focus has moved to employ TMD evolution in more recent works, especially in
view of the B-factory data at Q

2 ⇠ 100 GeV2.
The results for the transversity distributions from global fits are of the same signr as

results for the helicity distribution, but somewhat smaller in magnitude, by as much as a
factor of two for the d-quark distribution. Flavor decompositions of the collinear transver-
sity distribution, based on analysis of dihadron production in semi-inclusive deep-inelastic
scattering [122–124], e+e� annihilation [125], and more recently in p

"
p collision [126], con-

firm this general behavior [127–130]. In general, the d-quark transversity distribution is
much less constrained, given the u-quark dominance in many of the processes employed
in the extractions. It is interesting to remark that all phenomenological extractions of the
transversity distribution present some discrepancies with respect to lattice predictions, es-
pecially for what concerns the u-quark contribution to the nucleon tensor charge (see, e.g.,
refs. [131–133]).

The Collins asymmetries extracted here for mesons in one-dimensional projections re-
semble to a high degree those published previously [29]. This is expected as based on the
same data set, though involving a number of analysis improvements (cf. section 3.4). The
most significant advancement in the measurement of the SFA shown in figure 8 is the in-
clusion of the ✏-dependent kinematic prefactors in the probability density function (3.3) of
the maximum-likelihood fit. This leads on average to an amplification of the asymmetry
magnitude as, in the case of the Collins asymmetry, this prefactor is smaller than unity and
thus diminishes the transversity/Collins-induced modulation.

The Collins asymmetries for charged pions are opposite in sign and increasing with x,
which can be attributed to transversity predominantly being a valence-quark effect. The

rNote that the absolute sign can not be determined unambiguously due to the chiral-odd nature of both
transversity and the Collins fragmentation function.
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subleading twist — <sin(φs)>UT

clearly non-zero asymmetries 

opposite sign for charged pions (Collins-like behavior) 

striking z dependence and in particular magnitude 

similar observation at COMPASS
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Figure 25. The 2hsin (�S)/
p

2✏(1 + ✏) ihU? amplitudes for charged mesons (left: pions; right:
kaons) presented either in bins of x, z, or Ph?. Data at large values of z, marked by open points
in the z projection, are not included in the other projections. Systematic uncertainties are given
as bands, not including the additional scale uncertainty of 7.3% due to the precision of the target-
polarization determination.

of 0.2 < z < 0.7, without presenting data binned in z or for z > 0.7. Likewise, pre-
liminary COMPASS data, both for the semi-inclusive z region and for large z, do not
exhibit a sizable 2 hsin (2�)ihUk asymmetry [165]. Only the CLAS collaboration reported
non-vanishing 2 hsin (2�)ihUk asymmetry amplitudes for charged pions [166], however, not
for the z > 0.7 range considered here. In contrast to the earlier HERMES measure-
ment of 2 hsin (2�)ihUk, the CLAS data are on average at larger z since they are integrated
over the range 0.4 < z < 0.7. Thus, the non-zero CLAS data might be a hint of an in-
crease in magnitude of these asymmetry amplitudes with increasing z. On the other hand,
the negative values of these asymmetry amplitudes are not compatible with the positive
2hsin (2�� �S)/

p
2✏(1 + ✏) i⇡+

U? amplitudes presented here. Last but not least, positive
sin (2�� �S) modulations have been observed in exclusive ⇡

+ electroproduction off trans-
versely polarized protons [167], which suggests a smooth transition from the semi-exclusive
high-z region studied here to exclusive ⇡

+ production.
One of the more striking results of this analysis is the observation of large subleading-

twist 2hsin (�S)/
p

2✏(1 + ✏) ihU? Fourier amplitudes. In particular, they provide the largest
twist-3 signal in this measurement. They surprise also with a large kinematic dependence
as visible in figure 25, where they are shown for charged mesons. In the semi-inclusive
deep-inelastic scattering region, mainly the Fourier amplitudes for negative mesons are sig-
nificantly different from zero, being of order -0.02. The three-dimensional binning, depicted
in figure 26 for the ⇡

�, reveals that those non-vanishing asymmetries stem predominantly
from the large-x and large-z region, where they reach even larger magnitudes. The ampli-
tudes clearly rise with z for charged pions and positive kaons. The precision for K

� and
neutral pions in that region is insufficient for drawing a strong conclusion, though also here
an increase in magnitude with z is hinted. A noteworthy characteristic of the results is the
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out of time … no specific conclusions

check carefully acceptance effects (no experiment has perfect acceptance) 

requires very good model of physics one is after 

do not exclude data just because some MC tells you the data are bad 

rather include as much information in addition to your main results, in 
particular data-driven kinematic distributions 

bin in as many dimensions as possible (best fully differential)
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opposite behavior at HERMES/CLAS of negative pions in z projection 
due to different x-range probed 

CLAS more sensitive to e(x)Collins term due to higher x probed?
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Figure 19. Pretzelosity SFA for charged mesons (left: pions; right: kaons) presented either in
bins of x, z, or Ph?. Data at large values of z, marked by open points in the z projection, are not
included in the other projections. Systematic uncertainties are given as bands, not including the
additional scale uncertainty of 7.3% due to the precision of the target-polarization determination.
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Figure 20. Pretzelosity SFA for ⇡
0 (left), protons, and antiprotons (right) presented either in

bins of x, z, or Ph?. Data at large values of z, marked by open points in the z projection, are
not included in the other projections (no such high-z points are available for antiprotons due to a
lack of precision). Systematic uncertainties are given as bands, not including the additional scale
uncertainty of 7.3% due to the precision of the target-polarization determination.

lations, e.g., from the Collins function that changes sign for favored and disfavored frag-
mentation, might also contribute to the vanishing signal. Model calculations thus predict
in general small asymmetries below 0.01 (see, e.g., ref. [57]), beyond the precision of this
measurement.

– 41 –

chiral-odd ➥ needs Collins FF (or similar) 
1H, 2H & 3He data consistently small 

cancelations?  pretzelosity=zero? or just the additional suppression by 
two powers of Ph⊥  

[A. Airapetian et al., JHEP12(2020)010]
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3

polarized 5.9 GeV electron beam with an average cur-
rent of 12µA. Polarized electrons were excited from a
superlattice GaAs photocathode by a circularly polar-
ized laser [31] at the injector of the CEBAF accelerator.
The laser polarization, and therefore the electron beam
helicity, was flipped at 30 Hz using a Pockels cell. The
average beam polarization was (76.8± 3.5)%, which was
measured periodically by Møller polarimetry. Through
an active feedback system [32], the beam charge asym-
metry between the two helicity states was controlled to
less than 150 ppm over a typical 20 minute period be-
tween target spin-flips and less than 10 ppm for the entire
experiment. In addition to the fast helicity flip, roughly
half of the data were accumulated with a half-wave plate
inserted in the path of the laser at the source, providing
a passive helicity reversal for an independent cross-check
of the systematic uncertainty.

The ground state 3He wavefunction is dominated by
the S-state, in which the two proton spins cancel and the
nuclear spin resides entirely on the single neutron [33].
Therefore, a polarized 3He target is the optimal effective
polarized neutron target. The target used in this mea-
surement is polarized by spin-exchange optical pumping
of a Rb-K mixture [34]. A significant improvement in tar-
get polarization compared to previous experiments was
achieved using spectrally narrowed pumping lasers [35],
which improved the absorption efficiency. The 3He gas of
~10 atm pressure was contained in a 40-cm-long glass ves-
sel, which provided an effective electron-polarized neu-
tron luminosity of 1036 cm−2s−1. The beam charge was
divided equally among two target spin orientations trans-
verse to the beamline, parallel and perpendicular to the
central l⃗-⃗l′ scattering plane. Within each orientation, the
spin direction of the 3He was flipped every 20 minutes
through adiabatic fast passage [36]. The average in-beam
polarization was (55.4± 2.8)% and was measured during
each spin flip using nuclear magnetic resonance, which
in turn was calibrated regularly using electron paramag-
netic resonance [37].

The scattered electron was detected in the BigBite
spectrometer, which consists of a single dipole magnet
for momentum analysis, three multi-wire drift cham-
bers for tracking, a scintillator plane for time-of-flight
measurement and a lead-glass calorimeter divided into
pre-shower/shower sections for electron identification
(ID) and triggering. Its angular acceptance was about
64 msr for a momentum range from 0.6 GeV to 2.5 GeV.
The left High Resolution Spectrometer (HRS) [38] was
used to detect hadrons in coincidence with the Big-
Bite Spectrometer. Its detector package included two
drift chambers for tracking, two scintillator planes for
timing and triggering, a gas Cerenkov detector and a
lead-glass calorimeter for electron ID. In addition, an
aerogel Čerenkov detector and a ring imaging Čerenkov
detector were used for hadron ID. The HRS central mo-
mentum was fixed at 2.35 GeV with a momentum accep-
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Figure 1. 3He A
cos(φh−φS)
LT azimuthal asymmetry plotted

against x for positive (top left) and negative (top right)
charged pions. The ALL correction (see text) that was ap-
plied and its uncertainty are shown in the bottom panels.

tance of ±4.5% and an angular acceptance of ∼6 msr.
The SIDIS event sample was selected with particle

identification and kinematic cuts, including the four mo-
mentum transfer squared Q2 > 1 GeV2, the virtual pho-
ton-nucleon invariant mass W > 2.3 GeV, and the mass
of undetected final-state particles W ′ > 1.6 GeV. The
kinematic coverage was in the valence quark region for
values of the Bjorken scaling variable in 0.16 < x < 0.35
at a scale of 1.4 < Q2 < 2.7GeV2. The range of measured
hadron transverse momentum Ph⊥ was 0.24-0.44 GeV.
The fraction z of the energy transfer carried by the ob-
served hadron was confined by the HRS momentum ac-
ceptance to a small range about z ∼ 0.5-0.6. Events
were divided into four x-bins with equivalent statistics.
At high x, the azimuthal acceptance in φh−φS was close
to 2π, while at lower x, roughly half of the 2π range
was covered, including the regions of maximal and mini-
mal sensitivity to Acos(φh−φS)

LT at cos (φh − φS) ∼ ±1 and
zero, respectively. The central kinematics were presented
in Ref. [30].

The beam-helicity DSA was formed from the mea-
sured yields as in Eq. (1). The azimuthal asymme-
try in each x-bin was extracted directly using an az-
imuthally unbinned maximum likelihood estimator with
corrections for the accumulated beam charge, the data
acquisition livetime, and the beam and target polariza-
tions. The result was confirmed by an independent bin-
ning-and-fitting procedure [30]. The sign of the asymme-
try was cross-checked with that of the known asymmetry
of 3H⃗e(e⃗, e′) elastic and quasi-elastic scattering on lon-
gitudinally and transversely polarized targets [39]. The
small amount of unpolarized N2 used in the target cell to
reduce depolarization diluted the measured 3He asymme-
try, which was corrected for the nitrogen dilution defined
as

fN2
≡

NN2
σN2

N3Heσ3He +NN2
σN2

, (2)

[PRL 108 (2012) 052001]
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Figure 11. Leading-twist Acos(φh−φS)
LT : preliminary COMPASS data [167] (a,b); and our calculation

for COMPASS kinematics (c) shown separately for reasons explained in the caption of figure 9.

6.1 Leading-twist A
cos(φh−φS)
LT

We assume for g⊥1T the Gaussian Ansatz as shown in (B.9a) of appendix B.3, see also [28],

and evaluate g⊥(1)q
1T (x) using (3.6a), which yields the result shown in figure 10. For our

numerical estimates we use ⟨k2⊥⟩g⊥1T = ⟨k2⊥⟩g1 , which is supported by lattice results [67].

In the Gaussian Ansatz the structure function F cos(φh−φS)
LT has the form

F cos(φh−φS)
LT (x, z, PhT ) = x

∑

q

e2q g
⊥(1)q
1T (x)Dq

1(z) b
(1)
B

(
zPhT

λ

)
G(PhT ) (6.1a)

F cos(φh−φS)
LT (x, z, ⟨PhT ⟩) = x

∑

q

e2q g
⊥(1)q
1T (x)Dq

1(z) c
(1)
B

(
z

λ1/2

)
(6.1b)

where λ = z2⟨k2⊥⟩g⊥1T + ⟨P 2
⊥⟩D1 , b

(1)
B = 2MN , c(1)B =

√
πMN , see appendix B.5 for details.

This asymmetry was measured at JLab [173], COMPASS [174–176] and HERMES [177,

178] (for the latter two experiments only preliminary results are available so far). Figure 11

shows the preliminary results from the 2010 COMPASS data [167], in addition to our calcu-

lation, where we approximate the charged hadrons (70–80 % of which are π± at COMPASS)

by charged pions, see appendix A.1. We observe that the WW-type approximation de-

scribes the data within their experimental uncertainties. For comparison also results from

the theoretical works [28, 170, 171] are shown. Our results are also compatible with the
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Figure 21. The 2hcos (�� �S)/
p
1� ✏2 ihL? amplitudes for charged mesons (left: pions; right:

kaons) presented either in bins of x, z, or Ph?. Data at large values of z, marked by open points in
the z projection, are not included in the other projections. Systematic uncertainties are given as
bands, not including the additional scale uncertainty of 8.0% due to the precision in the determi-
nation of the target and beam polarizations.

4.4 Signals for the worm-gear (II) distribution g
q
1T

�
x,p2

T

�

The naive-T -even and chiral-even worm-gear (II) distribution g
q
1T

�
x,p2

T

�
is unique in the

sense that it is the only TMD that vanishes when integrating over pT but neither entails
nor is affected by final-state interactions. At leading twist, this TMD cannot contribute to
naive-T -odd effects that cause single-spin asymmetries. Its spin-orbit correlation, �Si

T p
i
T ,

involves a common product of the helicity of the struck quark and the transverse spin
direction of the nucleon. In combination with the selection of quarks with a certain helicity
by a longitudinally polarized lepton beam, the worm-gear (II) distribution g

q
1T

�
x,p2

T

�
can

be related to the cos (�� �S) modulation of the double-spin asymmetry in the scattering
of longitudinally polarized leptons by transversely polarized nucleons.

This cos (�� �S) modulation provides a leading-twist signal for the worm-gear (II)
distribution g

q
1T

�
x,p2

T

�
in combination with the spin-independent fragmentation function

D
q!h
1

�
z, z

2k2
T

�
[c.f. eq. (2.10)]. As such it is not additionally suppressed in the asymmetry

amplitude by the relative magnitude of H ?,q!h
1

�
z, z

2k2
T

�
compared to D

q!h
1

�
z, z

2k2
T

�
.

In figures 21 and 22, the 2hcos (�� �S)/
p
1� ✏2 ihL? Fourier amplitudes of the double-

spin asymmetry A
h
L? are presented for pions, charged kaons, as well as for (anti)protons.

As a consequence of the relatively small degree of polarization of the HERA lepton beam
during the years 2002–2005, the statistical uncertainties are generally larger than those for
the Fourier amplitudes of the transverse single-spin asymmetry A

h
U?.

For positively charged pions, non-vanishing 2hcos (�� �S)/
p
1� ✏2 ihL? Fourier ampli-

tudes are extracted, providing an indication for a non-vanishing worm-gear (II) distribution
g
q
1T

�
x,p2

T

�
. Results for ⇡� and K

+ are inconsistent with zero at 90% but not at 95% con-
fidence level.

When comparing the meson results to the Sivers asymmetries, which also involve only
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Subtracting mesons from decay of excl. VM production

“corrected” should better read “VM subtracted”

34(deuteron) ranges from 1.2 (1.1) in the first z bin to 2.6 (1.8)
in the last z bin. These results can be attributed to the
dominance of scattering off the u quarks, reflecting the fact
that the fragmentation process u ! !þ is favored, while
the process u ! !" is unfavored. With rising z, this effect
is enhanced. Similarly, the higher !" multiplicities for the
deuteron are a result of the increased fraction of d quarks in
the target and of the stronger favored fragmentation to the
!" from the neutron. The Kþ multiplicity for the proton is
slightly larger than for the deuteron, while within errors
for K" the multiplicities are equal. The ratio Kþ=K"

rises from 1.5 to 5.7 (proton target) and from 1.3 to 4.6
(deuteron target) for 0:2< z < 0:8, reflecting the fact that
K" cannot be produced through favored fragmentation
from the nucleon valence quarks. Finally, the Kþ=!þ ratio
at high z is about 1=3, reflecting strangeness suppression
in fragmentation (when assuming scattering mainly from
u quarks).

Figure 6 shows the asymmetry

Ah
d"p ¼ Mh

deuteron"Mh
proton

Mh
deuteronþMh

proton

(7)

between the hadron production off a proton target and a
deuteron target. Because of the near equality of the proton
and deuteron multiplicities (see Fig. 4), the magnitude of
this asymmetry is small, but it reflects details of the quark
structure of the targets. The negative values for !þ and the
positive values for !" reflect the different valence-quark
content of the target nuclei. The measured asymmetry in

Fig. 6 is more pronounced in the high-z region for kaons.
For positive kaons it is similar to that of !þ, while the
corresponding asymmetry for negative kaons is near zero,
except at higher z, suggesting that negative kaons are less
sensitive to the valence-quark content of the target. An LO
calculation (see Sec. V) of Ah

d"p shown in Fig. 6 reprodu-

ces the measured values for positive charge, but strongly
overpredicts the asymmetries for negative charge. The
same trend of negative values for !þ and the positive
values for !" is evident in Fig. 7, where the asymmetry
A!
d"p is plotted as a function of xB for four slices in z. There

is no strong dependence of A!
d"p on the slice in z or on xB.

When the statistical precision permits, binning of
extracted multiplicities in two or more dimensions can
provide useful insights into the correlations between kine-
matic variables and allow for the separation of the effects
of PDFs and FFs. In Fig. 8 the multiplicities are presented
for positively and negatively charged pions and kaons as a
function of transverse hadron momentum Ph?, xB, and Q 2

for the four slices of z between 0.2 and 0.8. The features of
the Ph? distributions result from the combined effects of
the initial transverse motion of the struck quark in SIDIS,
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the statistical uncertainties are too small to be visible. The
systematic uncertainties are given by the error bands.
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2. RICH unfolding

As described in Sec. III B, the hadron identification is
based on the response of the RICH detector. The efficiency
of the detector is encoded in 3! 4 matrices binned in
momentum, charge, and event topology (number of tracks
in one detector half). They relate the vector of true hadron
type Th with the vector of identified hadron type Ih,

I!

IK

Ip

IX

0
BBBBB@

1
CCCCCA
¼

P!
! P!

K P!
p

PK
! PK

K PK
p

PP
! Pp

K Pp
p

PX
! PX

K PX
p

0
BBBBB@

1
CCCCCA
#

T!

TK

Tp

0
BB@

1
CCA: (2)

Here, Pi
t is the probability that a hadron of true type t is

identified as a hadron of type i. The superscript X refers to
unidentified hadrons. The matrices are extracted from a
Monte Carlo simulation of the detector response that uses
the PID algorithm. Truncating the X row and inverting the
matrix yields a relation that gives a weight, the correspond-
ing element of P$ 1

trunc, with which each identified hadron is
counted as pion, kaon, or proton,

~T ¼ P$ 1
trunc # ~I: (3)

The uncertainties due to RICH unfolding were estimated to
be less than 0.5% for pions and less than 1.5% for kaons.

3. Trigger efficiencies

The required trigger combines information from three
hodoscopes and the electromagnetic calorimeter. The effi-
ciencies of the individual detectors are extracted using
special calibration triggers, yielding an overall efficiency
depending on the track momentum and the event topology
(e.g., events with one or two tracks) that ranged from
95% to 99%. The events are weighted with the inverted
efficiency factor.

4. Exclusive vector-meson contribution

The exclusive production of vector-mesons ("0,!, or # )
can be described in the vector-meson dominance (VMD)
model as the fluctuation of the virtual photon into a q !q pair
before its interaction with the target nucleon. These vector
mesons subsequently decay into lighter hadrons that are
then found in the final hadronic state. The cross sections for
the exclusive production show a 1=Q 6 dependence and can
be considered as higher-twist effects. They do not involve
the fragmentation of quarks originating from the target
nucleon. If fragmentation functions were to be extracted
from multiplicities that include such an exclusive produc-
tion, they would be process dependent. For this reason
the data presented in this paper have been corrected for
hadrons stemming from these processes, but the final tabu-
lation includes data with and without this correction.
The fraction of final-state hadrons originating from

exclusive vector-meson decay was evaluated in each kine-
matic bin using the PYTHIA Monte Carlo generator. This
PYTHIA version incorporated a VMD model tuned to
describe exclusive "0 production at HERMES [32]. Since
PYTHIA can only simulate proton or neutron targets, the
values for deuterium were constructed as the combination
of the values for these nucleons. The major contribution
due to exclusive vector mesons to the final-state hadron
sample arises in the form of pions originating from "0

decay. Due to its anisotropic decay-angle distribution,
pions from "0 decay are concentrated at low and high z.
For the low-statistics high-z region near z ¼ 1, it is esti-
mated that up to 50% of the charged pions originate from

TABLE III. Three-dimensional binning used for the unfolding
correction of those multiplicities presented as a function of z
(Figs. 4 and 6).

xB 0.023–0.085–0.6
z 0.1–0.15–0.2–0.25–0.3–0.4–0.5–0.6–0.7–0.8–1.1
Ph? [GeV] 0.0–0.1–0.3–0.45–0.6–1.2

TABLE IV. Three-dimensional binning used for the unfolding
correction of those multiplicities presented as a function of Ph?
and z (Fig. 8).

xB 0.023–0.085–0.6
z 0.1–0.2–0.3–0.4–0.6–0.8–1.1
Ph? [GeV] 0.0–0.1–0.2–0.3–0.4–0.5– 0.6–0.7–0.8–1.2
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decay of exclusive vector mesons as a function of z, from PYTHIA
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