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3D Tomography of the proton
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Indeed, measurements at the EIC and
lattice calculations will have a high degree
of complementarity. For some quantities,
notably the x moments of unpolarized and
polarized quark distributions, a precise de-
termination will be possible both in experi-
ment and on the lattice. Using this to vali-
date the methods used in lattice calculations,
one will gain confidence in computing quan-
tities whose experimental determination is
very hard, such as generalized form factors.
Furthermore, one can gain insight into the
underlying dynamics by computing the same
quantities with values of the quark masses
that are not realized in nature, so as to reveal
the importance of these masses for specific
properties of the nucleon. On the other hand,
there are many aspects of hadron structure
beyond the reach of lattice computations, in
particular, the distribution and polarization
of quarks and gluons at small x, for which
collider measurements are our only source of
information.
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Figure 2.1: Schematic view of a parton with
longitudinal momentum fraction x and trans-
verse position bT in the proton.

Both impact parameter distributions
f(x, bT ) and transverse-momentum distri-
butions f(x,kT ) describe proton structure
in three dimensions, or more accurately in
2+ 1 dimensions (two transverse dimensions
in either configuration or momentum space,
along with one longitudinal dimension in mo-

mentum space). Note that in a fast-moving
proton, the transverse variables play very dif-
ferent roles than the longitudinal momen-
tum.

It is important to realize that f(x, bT )
and f(x,kT ) are not related to each other by
a Fourier transform (nevertheless it is com-
mon to denote both functions by the same
symbol f). Instead, f(x, bT ) and f(x,kT )
give complementary information about par-
tons, and both types of quantities can be
thought of as descendants of Wigner distri-
butions W (x, bT ,kT ) [8], which are used ex-
tensively in other branches of physics [9].
Although there is no known way to mea-
sure Wigner distributions for quarks and
gluons, they provide a unifying theoretical
framework for the di↵erent aspects of hadron
structure we have discussed. Figure 2.2
shows the connection between these di↵erent
aspects and the experimental possibilities to
explore them.

All parton distributions depend on a
scale which specifies the resolution at which
partons are resolved, and which in a given
scattering process is provided by a large mo-
mentum transfer. For many processes in
e+p collisions, the relevant hard scale is Q
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(see the Sidebar on page 19). The evolution
equations that describe the scale dependence
of parton distributions provide an essential
tool, both for the validation of the theory
and for the extraction of parton distributions
from cross section data. They also allow one
to convert the distributions seen at high res-
olution to lower resolution scales, where con-
tact can be made with non-perturbative de-
scriptions of the proton.

An essential property of any particle is its
spin, and parton distributions can depend on
the polarization of both the parton and the
parent proton. The spin structure is particu-
larly rich for TMDs and GPDs because they
single out a direction in the transverse plane,
thus opening the way for studying correla-
tions between spin and kT or bT . Informa-
tion about transverse degrees of freedom is
essential to access orbital angular momen-
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kT

Transverse momentum 
dependent (TMD) PDFs

Generalized Parton 
Distributions (GPDs)

∫ d2bT ∫ d2kT

Wigner distributions 
(or GTMDs):

f(x, ⃗b T)f(x, ⃗k T)

W(x, ⃗k T, ⃗b T)

Momentum space: 
confined motion

Coordinate space: 
spatial distribution
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• TMD processes:

TMDPDFs from experiments
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Parton Distributions

provide key information about 
the structure of hadrons
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Quark TMDs
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• There are eight TMD 
distributions in leading twist 

• TMD distributions provide a 
more detailed picture of the 
many body parton structure of 
the hadron 

• Interplay with the transverse 
momentum

h
h1

h2e-

e- e-e+

fq/P (x) fq/P (x, kT )
longitudinal longitudinal & Transverse

TMD:

� � Dh1/q(x, kT )Dh2/q(x, kT )� � fq/P (x, kT )Dh/q(x, kT ) � � fq/P (x, kT )fq/P (x, kT )

qT � Q
Fragmentation

Dh/q(x, kT )

µ+

µ�

Q, qT

Many different schemes for TMD factorization in literature:

• Collins, Soper and Sterman, NPB250 (1985); Collins, 2011;

• Ji, Ma and Yuan, PRD71 (2005) 034005;

• Becher and Neubert, EPJC71 (2011);

• Echevarria, Idilbi and Scimemi, JHEP07 (2012), PLB726 (2013);

• Chiu, Jain, Neil and Rothstein, JHEP05 (2012), PRL108 (2012);

• Li, Neil and Zhu, arXiv: 1604.00392.
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• Beam function :

Definition of TMDPDF:
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f TMD
i (x, ⃗b T, μ, ζ) = lim

ϵ→0,τ→0
ZUV(ϵ, μ, xP+)Bi(x, ⃗b T, ϵ, τ, xP+) Si(bT, ϵ, τ)

UV divergence regulator

Rapidity divergence regulator

• Soft function :

b⊥

t
z

q

q

b+

tz

b⊥

t
z

tz

Bq(x, b T, ϵ, τ) = ∫
db−

2π
e−i(xP+)b−⟨P | q̄(bμ)W(bμ)

γ+

2
× WT(−∞n̄; b T, 0 T)W†(0)q(0)

τ
|P⟩

⃗P

Sq(bT, ϵ, τ) =
1
Nc

⟨0 |Tr[S†
n( ⃗b T)Sn̄( ⃗b T)ST

× S†
n̄( ⃗0 T)Sn( ⃗0 T)S†

T]
τ

|0⟩

Rapidity-regulator-independent

ζ = (2xP+e−yn)2Collins-Soper scale:
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db−

2π
e−i(xP+)b−⟨P | q̄(bμ)W(bμ)

γ+

2
× WT(−∞n̄; b T, 0 T)W†(0)q(0)

τ
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1
Nc

⟨0 |Tr[S†
n( ⃗b T)Sn̄( ⃗b T)ST

× S†
n̄( ⃗0 T)Sn( ⃗0 T)S†

T]
τ

|0⟩

Rapidity divergences

Rapidity-regulator-independent

ζ = (2xP+e−yn)2Collins-Soper scale:
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TMDPDF Evolution
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Anomalous dimension for µ evolution, perturbatively calculable;μ
d ln f TMD

i

dμ
= γi

μ(μ, ζ)

1
2

ζ
d ln f TMD

i

dζ
= γi

ζ(μ, bT) Collins-Soper kernel.

dγi
ζ(μ, bT)
d ln μ

= 2
dγi

μ(μ, ζ)
d ln ζ

= − 2Γi
cusp[αs(μ)] Analytical in the  plane.μ − ζ

Nonperturbative when bT~1/ΛQCD.
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Global fitting of TMDPDF
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f TMD
i (x, ⃗b T, μ, ζ) = f TMD

i (x, ⃗b T, μ0, ζ0) exp[∫
μ

μ0

dμ′￼

μ′￼
γi

μ(μ′￼, ζ0)] exp[ 1
2

γi
ζ(μ, bT)ln

ζ
ζ0 ]

μ ∼ Q, ζ ∼ Q2

(μ0, ζ0)

JLab

COMPASS, RHIC, HERMES, EIC…

Tevatron, LHC
μ

ζ

Modelling Modelling

dσDY

dQdYd2qT
= ∑

i, j

Hij(Q, μ)∫d2bT ei b T⋅ q T f TMD
i (xa, b T, μ, ζa) f TMD

j (xb, b T, μ, ζb)[1 + 𝒪( q2
T

Q2
,

Λ2
QCD

Q2 )]

~2 GeV
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• Large-Momentum Effective Theory (LaMET)


• Soft function


• Collins-Soper kernel


• Lattice QCD calculation of the full TMDPDF

Lattice QCD Calculations in LaMET

7
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Large-Momentum Effective Theory (LaMET)
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PDF :

Cannot be calculated 

on the lattice

f(x) Quasi-PDF :

Directly calculable on 

the lattice

f̃(x, Pz)

z + ct = 0, z − ct ≠ 0 t = 0, z ≠ 0

f̃(x, Pz) = ∫
dz
2π

eibz(xPz)⟨P | ψ̄(bz)f(x) = ∫
db−

2π
e−ib−(xP+)⟨P | ψ̄(b−)

×
γ+

2
W[b−,0]ψ(0) |P⟩ ×

γz

2
W[bz,0]ψ(0) |P⟩
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Large-Momentum Effective Theory (LaMET)
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PDF :

Cannot be calculated 

on the lattice

f(x) Quasi-PDF :

Directly calculable on 

the lattice

f̃(x, Pz)

Related by Lorentz boost

z

t
pn

z/2�z/2

� �zp
2

�zp
2

z + ct = 0, z − ct ≠ 0 t = 0, z ≠ 0

f̃(x, Pz) = ∫
dz
2π

eibz(xPz)⟨P | ψ̄(bz)f(x) = ∫
db−

2π
e−ib−(xP+)⟨P | ψ̄(b−)

×
γ+

2
W[b−,0]ψ(0) |P⟩ ×

γz

2
W[bz,0]ψ(0) |P⟩
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Large-Momentum Effective Theory (LaMET)
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PDF :

Cannot be calculated 

on the lattice

f(x) Quasi-PDF :

Directly calculable on 

the lattice

f̃(x, Pz)

Related by Lorentz boost

z

t
pn

z/2�z/2

� �zp
2

�zp
2

z + ct = 0, z − ct ≠ 0 t = 0, z ≠ 0

f̃(x, Pz) = ∫
dz
2π

eibz(xPz)⟨P | ψ̄(bz)f(x) = ∫
db−

2π
e−ib−(xP+)⟨P | ψ̄(b−)

×
γ+

2
W[b−,0]ψ(0) |P⟩ ×

γz

2
W[bz,0]ψ(0) |P⟩

lim
Pz→∞

f̃(x, Pz) ?= f(x)
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Large-Momentum Effective Theory (LaMET)
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PDF :
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f(x) Quasi-PDF :

Directly calculable on 
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f̃(x, Pz)

Related by Lorentz boost

z

t
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� �zp
2

�zp
2

z + ct = 0, z − ct ≠ 0 t = 0, z ≠ 0

f̃(x, Pz) = ∫
dz
2π
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db−

2π
e−ib−(xP+)⟨P | ψ̄(b−)

×
γ+

2
W[b−,0]ψ(0) |P⟩ ×

γz

2
W[bz,0]ψ(0) |P⟩

lim
Pz→∞

f̃(x, Pz) ?= f(x)

✘
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• Quasi-PDF: ;


• PDF: including .

Pz ≪ Λ

Pz = ∞, Pz ≫ Λ

Large-Momentum Effective Theory (LaMET)
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• The limits  and  are not exchangeable;


• For , their infrared (nonperturbative) physics are the same.

Pz ≪ Λ Pz ≫ Λ
Pz ≫ ΛQCD

f(x, μ) = C (x, Pz /μ) ⊗ f̃(x, Pz)+O(
Λ2

QCD

x2P2
z

,
Λ2

QCD

(1 − x)2P2
z

)
Perturbative matching Power corrections

• X. Ji, PRL 110 (2013); SCPMA57 (2014). 

• X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014);

• X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, arXiv: 2004.03543.

: the ultraviolet lattice cutoff, Λ ∼ 1/a

• It is the large-momentum state, instead of 
the operator, that filters out collinear 
modes in the field operators;


• Contribution from the collinear modes is 
identical to the PDF.

Large-momentum 
expansion:
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• Quasi-beam function on lattice:

Construction of Quasi-TMDPDF
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B̃q
Γ(x, ⃗b T, a, L, Pz) = ∫

dbz

2π
eibz(xPz)B̃q(bz, ⃗b T, a, L, Pz)

= ∫
dbz

2π
eibz(xPz)⟨P | q̄(bμ)W ̂z(bμ; L−bz)

Γ
2

WT(L ̂z; ⃗b T, ⃗0 T)W†
̂z (0)q(0) |P⟩

Lorentz boost and L → ∞b⊥

t
z

q

q

b+

b⊥

t
z

q

q

bz

L

Bq B̃q

tz
tz

• Ji, Sun, Xiong and Yuan, PRD91 (2015);

• Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019);

• M. Ebert, I. Stewart, Y.Z., PRD99 (2019), JHEP09 (2019) 037.

• Ji, Liu and Liu, Nucl.Phys.B 955 (2020),  Phys.Lett.B 811 (2020).
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• Quasi-soft function on lattice (naive definition):

Construction of Quasi-TMDPDF
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S̃q(bT, a, L) =
1
Nc

⟨0 |Tr [S†
̂z ( ⃗b T; L)S− ̂z( ⃗b T; L)ST(L ̂z; ⃗b T, ⃗0 T)S†

− ̂z(
⃗0 T; L)Sn( ⃗0 T; L)S†

T(−L ̂z; ⃗b T, ⃗0 T)] |0⟩

b⊥

t
z

b⊥

t
z

L

Cannot be related by 
Lorentz boost

tz
tz

• Ji, Sun, Xiong and Yuan, PRD91 (2015);

• Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019);

• M. Ebert, I. Stewart, Y.Z., PRD99 (2019), JHEP09 (2019) 037.

• Ji, Liu and Liu, Nucl.Phys.B 955 (2020),  Phys.Lett.B 811 (2020).
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• Wilson lines off the light-cone:

Comparison to Collins-Soper-Sterman Scheme
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b⊥

t
z

b⊥

t
z

q

q

b+

tz

nμ
A ≡ nμ − e−2yAn̄μ

nμ
B ≡ n̄μ − e2yBnμf TMD

q (x, ⃗b T, μ, ζ) = lim
yB→−∞

ZUV
Bq(x, ⃗b T, ϵ, yP − yB)

Sq(bT, ϵ,2(yn − yB))

lim
yn−yB→−∞

Sq(bT, μ, 2(yn − yB)) = e2(yn−yB)γζ(bT,μ)+𝒟(bT,μ)

lim
yP−yB→−∞

Bq(x, ⃗b T, ϵ, yP − yB) ∝ e(yP−yB)γζ(bT,μ)  is what is missing in the 
quasi soft functions, which is 
intrinsically Minkowskian.

e𝒟(bT,μ)

Ji, Liu and Liu, Nucl.Phys.B 955 (2020), Phys.Lett.B 811 (2020).A. Vladimirov, JHEP 04 (2018).

Collins, Soper and Sterman, NPB250 (1985); Collins, 2011
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•  from a light-meson form factor:Sq
r (bT, μ)

Factorization and the reduced soft function

13

× f TMD
ns (x, ⃗b T, μ, ζ) + 𝒪 ( bT

L
,

1
bTPz

,
1

PzL )

f̃ TMD
ns (x, ⃗b T, μ, Pz)

Sq
r (bT, μ)

= CTMD
ns (μ, xPz) exp[ 1

2
γq
ζ (μ, bT)ln

(2xPz)2

ζ ]
Sq

r (bT, μ) = e𝒟(bT,μ)

• M. Ebert, I. Stewart, Y.Z., PRD99 (2019), JHEP09 (2019) 037;

• Ji, Liu and Liu, Nucl.Phys.B 955 (2020), Phys.Lett.B 811 (2020);

= ⟨π(−P) | j1(bT)j2(0) |π(P)⟩
= Sr

q(bT, μ) H(x, μ) ⊗ Φ†(x, bT, − Pz) ⊗ Φ(x, bT, Pz)

F(bT, Pz)

: Quasi-TMD distribution amplitudeΦ

Φ(x, bT, Pz) ≡ ∫
dbz

2π
eibz(xPz)⟨0 | q̄(bμ)W ̂z

Γ
2

WTW†
̂z q(0) |π(P)⟩Ji, Liu and Liu, Nucl.Phys.B 955 (2020).

H

CC

H

P ′P

S

t
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Reduced soft function from lattice QCD
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Calculate the TMD Soft Function on lattice

F(b⊥, Pz) = ⟨π(−Pz) |(q̄1Γq1)(b⊥)(q̄2Γq2)(0) |π(Pz)⟩

1. Define a large-momentum form factor of a non-

singlet light pseudo-scalar meson:

13

First lattice calculation:

Q.-A. Zhang, et al. (LP Collaboration), Phys.Rev.Lett. 125 (2020).

4

TMDWF,

C2(b?, P
z; pz, `, t) =

1

L3
p
ZE(2`, b?)

X

x

Trei
~P ·~x

⇥ hS
†
w(~x+~b, t, 0;�~p)W(~b, `)�5��Sw(~x, t, 0;P

z
� ~p)i

=
Aw(pz)Ap

2E
e
�Et

�`(0, b?, P
z
, `)(1 + c0e

��Et), (15)

where again we parameterize the mixing with one excited
state. Ap is the matrix element of the point sink pion in-
terpolation field. It will be removed when we normalize
�`(0, b?, P z

, `) with �`(0, 0, P z
, 0). We choose �� = �

t
�5

to define the wave function amplitude in Eq. (4). Based
on the quasi-TMDPDF study in Ref. [25, 27] with a sim-
ilar staple-shaped gauge link operator, the mixing e↵ect
could be sizable when summing various contributions. In
the supplemental material, we report a similar simulation
but using the A654 ensemble. We find that the mixing
e↵ects can reach order 5% for the transverse separation
b? ⇠ 0.6fm. These e↵ects will be included in the fol-
lowing analysis as one of the systematic uncertainties,
while a comprehensive study on the mixing e↵ects will
be conducted in the future.

FIG. 2. Results for the ` dependence of the quasi-TMDWF
with z = 0, and also the square root of the Wilson loop
which is used for the subtraction, taking the {P z, b?, t} =
{6⇡/L, 3a, 6a} case as a example. All the results are normal-
ized with their values at ` = 0.

The dispersion relation of the pion state, statistical
checks for the measurement histogram, and information
on the autocorrelation between configurations can be
found in the supplemental materials [28].

Numerical Results. Fig. 2 shows the dependence of
the norm of quasi TMDWFs on the length ` of the
Wilson-line. As one can see from this figure, with
{P

z
, b?, t} = {6⇡/L, 3a, 6a}, both the quasi-TMDWF

�`(0, b?, P z
, `) and the square root of the Wilson loop

ZE decay exponentially with length `, but the subtracted
quasi-TMDWF is length independent when ` � 0.4 fm.
Some other cases with larger P z, b?, and t can be found
in the supplemental materials [28]. Based on this ob-
servation, we will use ` = 7a = 0.686 fm as asymptotic

results for all cases in the following calculation.

FIG. 3. The ratios C3(b?, P
z, tsep, t)/C2(0, P

z, 0, tsep) (data
points) which converge to the ground state contribution at
t, tsep ! 1 (gray band) as function of tsep and t, with
{P z, b?} = {6⇡/L, 3a}. As in this figure, our data in gen-
eral agree with the predicted fit function (colored bands).

We performed a joint fit of the form factor and
quasi-TMDWF with the same P

z and b? with the
parameterization in Eqs. (14) and (15). The ra-
tios C3(b?, P z

, tsep, t)/C2(0, P z
, 0, tsep) with di↵erent tsep

and t for the {P
z
, b?} = {6⇡/L, 3a} case are shown in

Fig. 3, with ground state contribution (gray band) and
the fitted results at finite t2 and t (colored bands). In this
calculation, the excited state contribution is properly de-
scribed by the fit with �

2
/d.o.f. = 0.6. The details of the

joint fit, and also more fit quality checks are shown in the
supplemental materials [28], with similar fitting quality.

FIG. 4. The intrinsic soft factor as a function of b? with
b?,0 = a as in Eq. (9). With di↵erent pion momentum P z,
the results are consistent with each other. The dashed curve
shows the result of the 1-loop calculation, see Eq. (7), with the
strong coupling constant ↵s(1/b?). The shaded band corre-
sponds to the scale uncertainty of ↵s: µ 2 [1/

p
2,
p
2]⇥1/b?.

The systematic uncertainty from the operator mixing has
been taken into account.

The resulting soft factor as function of b? is plotted in
Fig. 4, at �= 2.17, 3.06 and 3.98, which corresponds to
P

z = {4, 6, 8}⇡/L = {1.05, 1.58, 2.11} GeV respectively.

F(bT, Pz)

Sr
q(bT, μ)
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Collins-Soper kernel from momentum evolution of quasi-TMDs:

Collins-Soper kernel from lattice QCD

Study of CS kernel through quasi-TMDs suggested in

• Ji, Sun, Xiong and Yuan, PRD91 (2015);

The concrete formalism first derived in

• Ebert, Stewart and YZ, Phys.Rev.D 99 (2019).

15

γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

ln
CTMD

ns (μ, xPz
2) f̃ TMD

ns (x, ⃗b T, μ, Pz
1)

CTMD
ns (μ, xPz

1) f̃ TMD
ns (x, ⃗b T, μ, Pz

2)

• Does not depend on the external hadron state;

• One can also calculate ratios of TMDPDFs with different spin structures. 

=
1

ln(Pz
1 /Pz

2)
ln

CTMD
ns (μ, xPz

2) B̃TMD
ns (x, ⃗b T, μ, Pz

1)

CTMD
ns (μ, xPz

1) B̃TMD
ns (x, ⃗b T, μ, Pz

2)

• Ebert, Schindler, Stewart and YZ, JHEP 09 (2020).
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Collins-Soper kernel from momentum evolution of quasi-TMDs:

Collins-Soper kernel from lattice QCD

Study of CS kernel through quasi-TMDs suggested in
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γq
ζ (μ, bT) =

1
ln(Pz

1 /Pz
2)

ln
CTMD

ns (μ, xPz
2) f̃ TMD

ns (x, ⃗b T, μ, Pz
1)

CTMD
ns (μ, xPz

1) f̃ TMD
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The idea of forming ratios has been used in the calculation of ratios of 
x-moments of TMDPDFs:

Hagler, Musch, Engelhardt, Yoon, et al., EPL88 (2009), PRD83 (2011), PRD85 (2012), PRD93 
(2016), arXiv:1601.05717, PRD96 (2017)

• Ebert, Schindler, Stewart and YZ, JHEP 09 (2020).
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Collins-Soper kernel from momentum evolution of quasi-TMDs:

Collins-Soper kernel from lattice QCD

Study of CS kernel through quasi-TMDs suggested in
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The concrete formalism first derived in

• Ebert, Stewart and YZ, Phys.Rev.D 99 (2019).
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• Ebert, Schindler, Stewart and YZ, JHEP 09 (2020).
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Collins-Soper kernel from lattice QCD

First exploratory calculation on a 
quenched lattice ensemble

Shanahan, Wagman, Y.Z., Phys.Rev.D 102 (2020).
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New CS kernel results
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Michael Wagman, in collaboration with Phiala Shanahan and Yong Zhao, APS April 2021

Good agreement found between our results and phenomenology

* lattice spacing / quark mass effects unquantified *

Agreement with calculation by Lattice Parton Collaboration,      
partial agreement with Regensberg / New Mexico State University 
(both use LO matching and other approximations)

Zhang et al [LPC], PRL 125 (2020) Schlemmer et al, arXiv:2103.16991 
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Shanahan, Wagman, Y.Z., in preparation;

Q.-A. Zhang, et al. (LP Collaboration), Phys.Rev.Lett. 125 (2020);

M. Schlemmer, et al. (Regensburg), 2103.16991.
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Conclusions
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Michael Wagman, in collaboration with Phiala Shanahan and Yong Zhao, APS April 2021

Nonperturbative QCD input is required to determine the Collins-Soper 
kernel governing TMDPDF evolution and improve precision of 
SIDIS and Drell-Yan predictions / TMDPDF extractions

First exploratory calculation in             LQCD shows proof-of-principle, 
importance of controlling systematics

Nf = 0

Results in                     LQCD with better systematic control coming soon!Nf = 2 + 1 + 1

Shanahan, MW, Zhao, PRD 102 (2020)

Preliminary results with dynamical 
fermions
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Comparison with the Lorentz-invariant approach
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Figure 2.8: Staple-shaped path for the gauge connection ,
E

@◆ in Eq. (2.143).

cannot extend to infinity, a staple-shaped gauge connection of finite extent ◆ is used,

,
E

@◆(1⇠/2,�1⇠/2) = ,
†
E
(1⇠/2; 0, ◆),1

�
◆E � 1/2; 0, 1

�
,E(�1⇠/2; 0, ◆) . (2.144)

This gauge connection is shown in Fig. 2.8, which corresponds to a generalization of the
illustration given in Fig. 2.1 (left) above in order to include finite length and to introduce more
flexible variables for the endpoints. Apart from the quark operator separation 1

⇠, the staple
link is described by the direction of the staple E

⇠ and the length of the staple ◆. In a concrete
lattice calculation, an extrapolation ◆ ! 1 must be performed from data obtained at finite ◆.
The staple direction E is taken off the light cone into the space-like region. This specification
is crucial in order to make the definition amenable to lattice computation; the reason is that
standard Lattice QCD methods to calculate matrix elements of the form in Eq. (2.143) are
restricted to operators that are defined at a single time. As already indicated further above,
the temporal lattice direction is Euclidean, and therefore no operators with a real, Minkowski
time extent can be accommodated. Consequently, it is imperative that all separations in the
operator, i.e., 1 and ◆E, be space-like. For this reason we take

E
+

E
� = �42HE < 0 . (2.145)

Only then is there no obstacle to boosting the problem to a Lorentz frame in which the operator
in Eq. (2.143) exists at a single time, with HE = 0. The lattice calculation is then carried out in
that particular frame.

The correlator (2.143) furthermore depends on the momenta % , %
0 of the in- and outgoing

states as well as their spin (. TMDs are obtained in the forward limit, % = %
0, which we will

assume for the remainder of the discussion in this section. (The generalization to nonzero
momentum transfer yields the Generalized Transverse Momentum-Dependent parton distri-
butions (GTMDs) discussed in Chapter 11.) A useful parameter to characterize the rapidity
of the staple link direction E relative to the hadron is the dimensionless Collins-Soper type
evolution parameter

✓̂ =
E · %p
|E2 |%2

= sinh(H% � HE) . (2.146)

This parameter characterizes the staple link connecting the quark operators. It therefore differs
from the variable ✓0 defined in Eq. (2.30), which involves a combination of variables inherited
from the proton matrix element (<? and H�) and the TMD soft factor (H=).
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Lorentz Invariant Modern CS (H⌫) Euclidean Lattice
% · 1 %

+
1
� �%I

1
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1
2 �b2

)
�12

I
� b2

)
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E · %
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p
�E2
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E
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2
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I
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2
)
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Table 2.7: Comparison in position space of the Lorentz invariant variables between the Euclidean
lattice approach and the modern CS definition prior to taking the H⌫ ! �1 limit. In modern CS we
have 1

⇠ = (0, 1� , 1)) in light-cone coordinates where E = =⌫(H⌫) from Eq. (2.45). The Euclidean lattice
construction takes 1⇠ = (0, 1G

)
, 1

H

)
, 1

I) in Cartesian coordinates.

Using Lorentz covariance, the matrix element in Eq. (2.143) can be decomposed into inde-
pendent tensors constructed from %

⇠, 1⇠ and E
⇠, with the coefficients (or amplitudes) uniquely

determined by the Lorentz scalars % · 1, 12, ✓̂, E · 1/
p
�E2, and ◆2

E
2 [126]. (Following standard

conventions, we do not treat the dependence on <
2
?
= %

2 as a variable.) Such decompositions
will be presented in Sec. 6.4. In Table 2.7 we list these Lorentz scalars, together with their
values in two reference frames for comparison. TMDPDFs are originally defined in a frame
where 1

+ = 0 and E) = %) = 0. This constrains one of the five Lorentz scalars, since it implies
the relation, expressed in Lorentz-invariant form,

E · 1
E · % =

% · 1
<

2
#

h
1 �

q
1 + ✓̂�2

i
. (2.147)

In Table 2.7 the column labeled Modern CS (H⌫) corresponds to the frame choice used in
the modern Collins-Soper definition with space-like Wilson lines of infinite extent, Eq. (2.48)
inserted into Eq. (2.37), with finite but large |H⌫ |. The column labeled Euclidean Lattice
gives the values in the frame where E

⇠ has no time component (HE = 0), in which the lattice
calculation is performed. Since all the Lorentz scalars can be determined in this Euclidean
frame, one can obtain full information about the unsubtracted TMDPDF. In order to make full
contact with the modern Collins definition of the unsubtracted TMDPDF, which is considered
in the limit ◆ ! 1 and eventually with large H⌫ ! �1, the lattice results obtained at finite
values must ultimately be extrapolated towards a large rapidity difference ✓̂ ! 1 and large
◆ ! 1.

An important corollary of this discussion is that the soft factor (2.38), cf. Fig. 2.1 (right),
cannot be straightforwardly calculated in Lattice QCD in a completely analogous fashion.
Since it contains two staple directions with two different rapidities, there exists no Lorentz
transformation that simultaneously renders both directions purely spatial. In the modern
Collins definition the soft function is combined with the unsubtracted TMDPDF as in Eq. (2.49),
which is necessary for the H⌫ ! �1 limit that yields the full TMDPDF to exist. One way to

Quasi-beam
−Pzbz

−b2
z − b2

T

sinh(yP)

−bz

−η2

TMD Handbook by the TMD collaboration.

At fixed P, Fourier transform 
to obtain x-dependence:

∫
d(P ⋅ b)

2π
e−ixP⋅b = − Pz ∫

dbz

2π
eixPzbz

Need  , so that 
 , and  .

xPz ≫ 1/bT
bz ≪ bT b2 ≈ − b2

T

In this limit, the Lorentz-
invariant approach leads to the 
same quasi-beam function.


Therefore, one should still 
need the reduced soft factor 
and perturbative matching 

 to extract the 
TMDPDF.
CTMD(μ, xPz)

Hagler, Musch, Engelhardt, Yoon, et al., EPL88 
(2009), PRD83 (2011), PRD85 (2012), PRD93 
(2016), arXiv:1601.05717, PRD96 (2017).
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Lattice QCD calculation of full TMDPDF
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× f TMD
ns (x, ⃗b T, μ, ζ) + 𝒪 ( bT

L
,

1
bTPz

,
1

PzL )

f̃ TMD
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= CTMD
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2
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(2xPz)2

ζ ]

• Calculation of the quasi-beam function, renormalization and 
matching to the MSbar scheme;


• Calculation of the reduced soft function;


• Calculation of the Collins-Soper kernel (to evolve to 
arbitrary Collins-Soper scale).

• M. Ebert, I. Stewart, Y.Z., JHEP 03 (2020);

• Shanahan, Wagman, Y.Z., Phys.Rev.D 101 (2020).
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• LaMET uses large-momentum hadron states to filter out 
collinear mode contributions, thus allowing for the extraction 
of parton physics from lattice QCD;


• The TMD soft function and Collins-Soper evolution kernel can 
both be calculated from lattice, and first results show 
promising signs;


• Outlook: Prediction of the full TMDPDF at initial scales to 
provide inputs/constraints for global analysis.

Conclusion
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