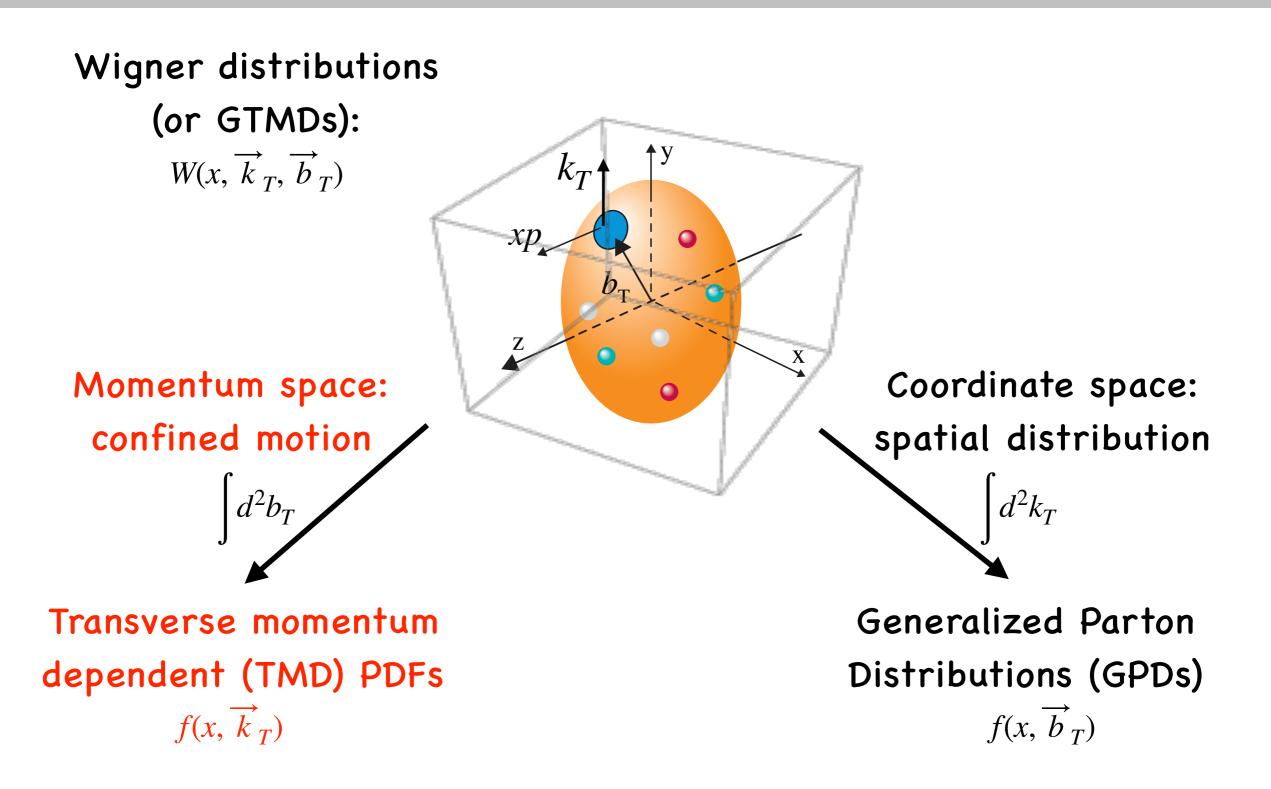
Lattice QCD Calculation of TMDs with Large-Momentum Effective Theory

TMD Studies: from JLab to EIC JLab, May 6—7, 2021

YONG ZHAO MAY 6, 2021

3D Tomography of the proton



TMPPDFs from experiment

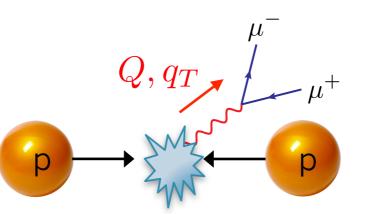
• TMD processes:

Semi-Inclusive DIS

Drell-Yan

 $\sigma \sim f_{q/P}(x,k_T) D_{h/q}(x,k_T) \quad \sigma \sim f_{q/P}(x,k_T) f_{q/P}(x,k_T) \bullet \text{ fMD distributions } p_{1/2}(x,k_T) D_{h_2/2}(x,k_T) = f_{1/2}(x,k_T) D_{h_2/2}(x,k_T) D_{h_2/2}(x,k_T) D_{h_2/2}(x,k_T) = f_{1/2}(x,k_T) D_{h_2/2}(x,k_T) D_{h_2/2}(x,k_T) D_{h_2/2}(x,k_T) = f_{1/2}(x,k_T) D_{h_2/2}(x,k_T) D_{h_2/2}(x,k_T) D_{h_2/2}(x,k_T) D_{h_2/2}(x,k_T) D_{h_2/2}(x,k_T) = f_{1/2}(x,k_T) D_{h_2/2}(x,k_T) D_{h_2/2}(x,k$

Fragmentation $D_{h/q}(x,k_T)$



 $q_T \ll Q$

 There are eight TMD distributions in leading twist

Χ

- more detailed pictur ho the the hadron
- Interplay with the transverse momentum

Many different schemes for TMD factorization in literature:

- Collins, Soper and Sterman, NPB250 (1985); Collins, 2011;
- Ji, Ma and Yuan, PRD71 (2005) 034005;
- Becher and Neubert, EPJC71 (2011);
- Echevarria, Idilbi and Scimemi, JHEP07 (2012), PLB726 (2013);
- Chiu, Jain, Neil and Rothstein, JHEP05 (2012), PRL108 (2012);
- Li, Neil and Zhu, arXiv: 1604.00392.

Definition of TMDPDF:

Collins-Soper scale: $\zeta = (2xP^+e^{-y_n})^2$ **Rapidity divergence regulator** $f_i^{\text{TMD}}(x, \overrightarrow{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0, \tau \to 0} Z_{\text{UV}}(\epsilon, \mu, xP^+) B_i(x, \overrightarrow{b}_T, \epsilon, \tau, xP^+) \sqrt{S^i(b_T, \epsilon, \tau)}$ UV divergence regulator Rapidity-regulator-independent • Soft function : **Beam function :** Z $ert ec b_\perp ert$ $|\vec{b}_{\perp}|$

$$B^{q}(x,\overrightarrow{b}_{T},\epsilon,\tau) = \int \frac{db^{-}}{2\pi} e^{-i(xP^{+})b^{-}} \langle P | \overline{q}(b^{\mu})W(b^{\mu})\frac{\gamma^{+}}{2} \qquad S_{q}(b_{T},\epsilon,\tau) = \frac{1}{N_{c}} \langle 0 | \operatorname{Tr} \left[S_{n}^{\dagger}(\overrightarrow{b}_{T})S_{\overline{n}}(\overrightarrow{b}_{T})S_{T} \right] \\ \times W_{T}(-\infty\overline{n};\overrightarrow{b}_{T},\overrightarrow{0}_{T})W^{\dagger}(0)q(0) \Big|_{\tau} | P \rangle \qquad \qquad \times S_{\overline{n}}^{\dagger}(\overrightarrow{0}_{T})S_{n}(\overrightarrow{0}_{T})S_{T}^{\dagger} \Big|_{\tau} | 0 \rangle$$

Definition of TMDPDF:

Collins-Soper scale: $\zeta = (2xP^+e^{-y_n})^2$ Rapidity divergence regulator $f_i^{\text{TMD}}(x, \overrightarrow{b}_T, \mu, \zeta) = \lim_{\epsilon \to 0, \tau \to 0} Z_{\text{UV}}(\epsilon, \mu, xP^+) B_i(x, \overrightarrow{b}_T, \epsilon, \tau, xP^+) \sqrt{S^i(b_T, \epsilon, \tau)}$ UV divergence regulator Rapidity-regulator-independent • Soft function : **Beam function :** $|\vec{b}_{\perp}|$ $|\vec{b}_{\perp}|$ **Rapidity divergences**

TMDPDF Evolution

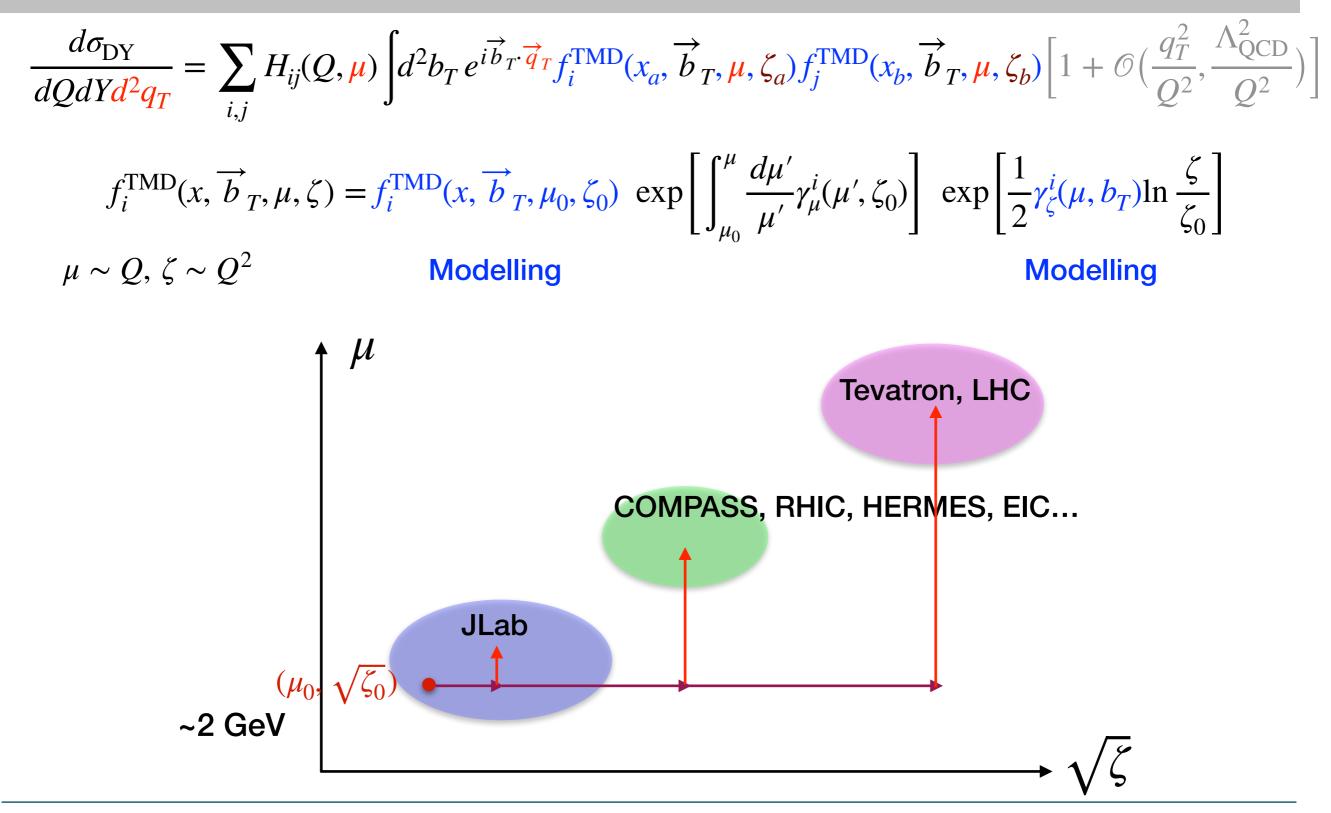
$$\mu \frac{d \ln f_i^{\text{TMD}}}{d\mu} = \gamma_{\mu}^i(\mu, \zeta)$$

Anomalous dimension for μ evolution, perturbatively calculable;

 $\frac{1}{2}\zeta \frac{d \ln f_i^{\text{TMD}}}{d\zeta} = \gamma_{\zeta}^i(\mu, b_T) \quad \text{Collins-Soper kernel.} \quad \text{Nonperturbative when } b_T \sim 1/\Lambda_{\text{QCD}}.$

$$\frac{d\gamma_{\zeta}^{i}(\mu, b_{T})}{d \ln \mu} = 2 \frac{d\gamma_{\mu}^{i}(\mu, \zeta)}{d \ln \zeta} = -2\Gamma_{\text{cusp}}^{i}[\alpha_{s}(\mu)]$$
 Analytical in the $\mu - \zeta$ plane.

Global fitting of TMDPDF



Lattice QCD Calculations in LaMET

- Large-Momentum Effective Theory (LaMET)
- Soft function
- Collins-Soper kernel
- Lattice QCD calculation of the full TMDPDF

$$z + ct = 0, \quad z - ct \neq 0$$

$$\overline{\psi}$$

$$\overline{\psi}$$

$$\overline{\psi}$$

$$\psi$$

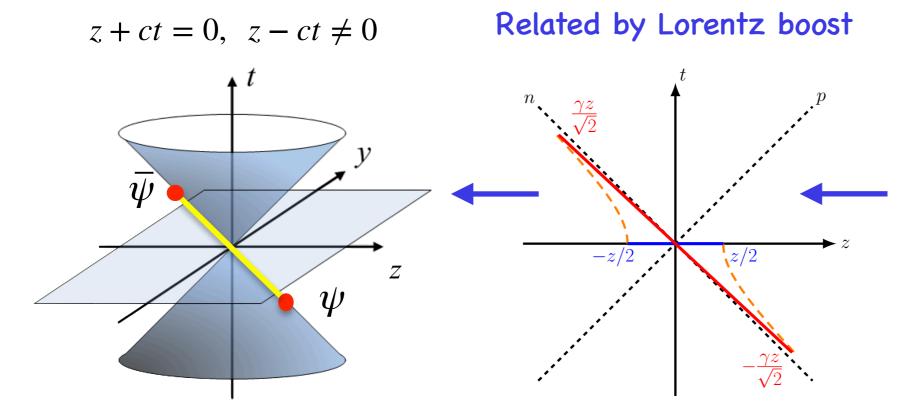
$$z$$

PDF f(x): Cannot be calculated on the lattice

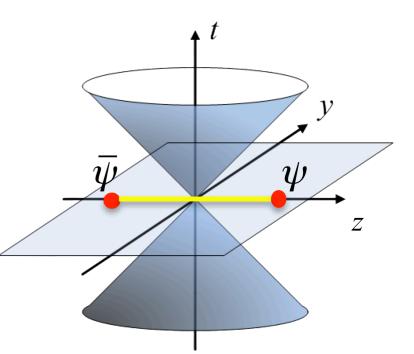
$$f(x) = \int \frac{db^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \langle P | \bar{\psi}(b^{-}) \\ \times \frac{\gamma^{+}}{2} W[b^{-}, 0] \psi(0) | P \rangle$$

 $t = 0, z \neq 0$

Quasi-PDF $\tilde{f}(x, P^{z})$: Directly calculable on the lattice $\tilde{f}(x, P^{z}) = \int \frac{dz}{2\pi} e^{ib^{z}(xP^{z})} \langle P | \bar{\psi}(b^{z})$ $\times \frac{\gamma^{z}}{2} W[b^{z}, 0] \psi(0) | P \rangle$



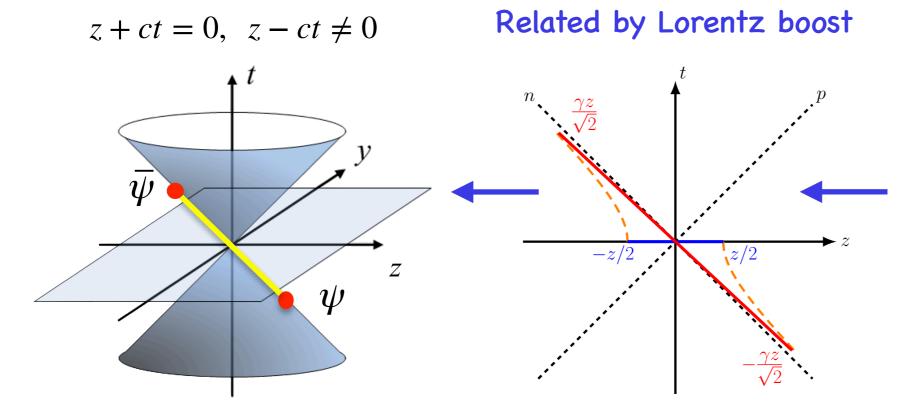
 $t = 0, \ z \neq 0$



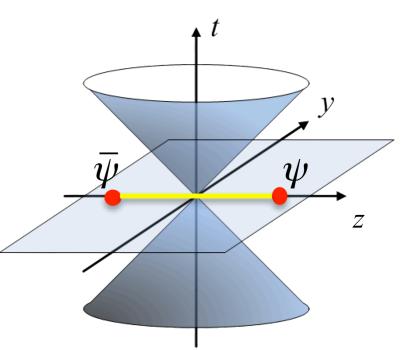
PDF f(x): Cannot be calculated on the lattice

$$f(x) = \int \frac{db^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \langle P | \bar{\psi}(b^{-}) \\ \times \frac{\gamma^{+}}{2} W[b^{-}, 0] \psi(0) | P \rangle$$

Quasi-PDF $\tilde{f}(x, P^{z})$: Directly calculable on the lattice $\tilde{f}(x, P^{z}) = \int \frac{dz}{2\pi} e^{ib^{z}(xP^{z})} \langle P | \bar{\psi}(b^{z})$ $\times \frac{\gamma^{z}}{2} W[b^{z}, 0] \psi(0) | P \rangle$



 $t = 0, \ z \neq 0$

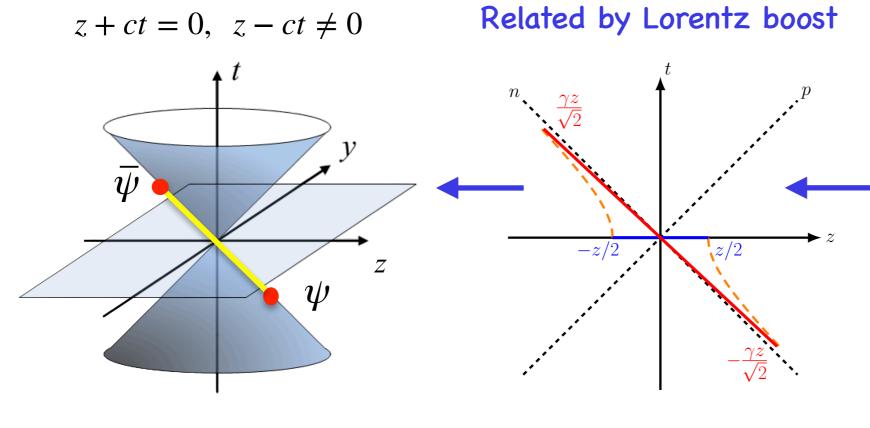


PDF f(x): Cannot be calculated on the lattice

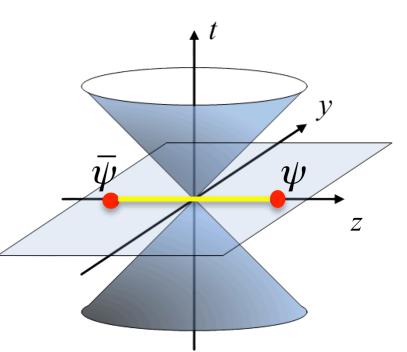
$$f(x) = \int \frac{db^{-}}{2\pi} e^{-ib^{-}(xP^{+})} \langle P | \bar{\psi}(b^{-}) \\ \times \frac{\gamma^{+}}{2} W[b^{-}, 0] \psi(0) | P \rangle$$

 $\lim_{P^z \to \infty} \tilde{f}(x, P^z) \stackrel{?}{=} f(x)$ $\tilde{f}(x, P^z) \stackrel{(z)}{=} f(x)$

Quasi-PDF $\tilde{f}(x, P^{z})$: Directly calculable on the lattice $\tilde{f}(x, P^{z}) = \int \frac{dz}{2\pi} e^{ib^{z}(xP^{z})} \langle P | \bar{\psi}(b^{z})$ $\times \frac{\gamma^{z}}{2} W[b^{z}, 0] \psi(0) | P \rangle$



 $t = 0, \ z \neq 0$



PDF f(x): Cannot be calculated on the lattice $\int db^{-}$

$$f(x) = \int \frac{db}{2\pi} e^{-ib^{-}(xP^{+})} \langle P | \bar{\psi}(b^{-}) \\ \times \frac{\gamma^{+}}{2} W[b^{-}, 0] \psi(0) | P$$

$$\lim_{P^z \to \infty} \tilde{f}(x, P^z) \stackrel{?}{=} f(x)$$

Quasi-PDF $\tilde{f}(x, P^{z})$: Directly calculable on the lattice $\tilde{f}(x, P^{z}) = \int \frac{dz}{2\pi} e^{ib^{z}(xP^{z})} \langle P | \bar{\psi}(b^{z})$ $\times \frac{\gamma^{z}}{2} W[b^{z}, 0] \psi(0) | P \rangle$

- Quasi-PDF: $P^z \ll \Lambda$; Λ : the ultraviolet lattice cutoff, $\sim 1/a$
- PDF: $P^z = \infty$, including $P^z \gg \Lambda$.
 - The limits $P^z \ll \Lambda$ and $P^z \gg \Lambda$ are not exchangeable;
 - \bullet For $P^z \gg \Lambda_{\rm QCD}$, their infrared (nonperturbative) physics are the same.

Large-momentum
$$f(x,\mu) = C(x, P^z/\mu) \otimes \tilde{f}(x, P^z) + O(\frac{\Lambda_{\text{QCD}}^2}{x^2 P_z^2}, \frac{\Lambda_{\text{QCD}}^2}{(1-x)^2 P_z^2})$$

Perturbative matching

Power corrections

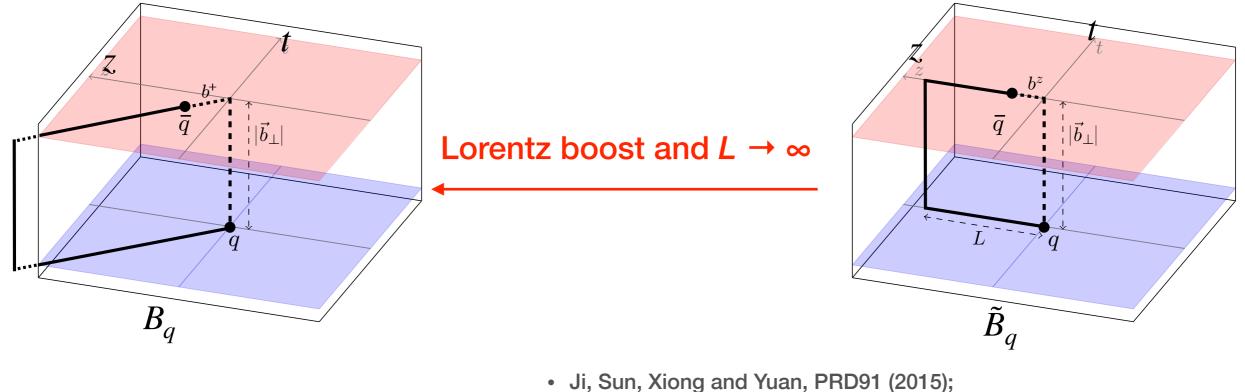
- It is the large-momentum state, instead of the operator, that filters out collinear modes in the field operators;
- Contribution from the collinear modes is identical to the PDF.

- X. Ji, PRL 110 (2013); SCPMA57 (2014).
- X. Xiong, X. Ji, J.-H. Zhang and YZ, PRD 90 (2014);
- X. Ji, Y.-S. Liu, Y. Liu, J.-H. Zhang and YZ, arXiv: 2004.03543.

Construction of Quasi-TMDPDF

Quasi-beam function on lattice:

$$\begin{split} \tilde{B}_{\Gamma}^{q}(x,\overrightarrow{b}_{T},a,\boldsymbol{L},P^{z}) &= \int \frac{db^{z}}{2\pi} e^{ib^{z}(xP^{z})} \tilde{B}_{q}(b^{z},\overrightarrow{b}_{T},a,\boldsymbol{L},P^{z}) \\ &= \int \frac{db^{z}}{2\pi} e^{ib^{z}(xP^{z})} \langle P \,|\, \bar{q}(b^{\mu}) W_{\hat{z}}(b^{\mu};\boldsymbol{L}-b^{z}) \frac{\Gamma}{2} W_{T}(\boldsymbol{L}\hat{z};\,\overrightarrow{b}_{T},\,\overrightarrow{0}_{T}) W_{\hat{z}}^{\dagger}(0)q(0) \,|\, P \rangle \end{split}$$

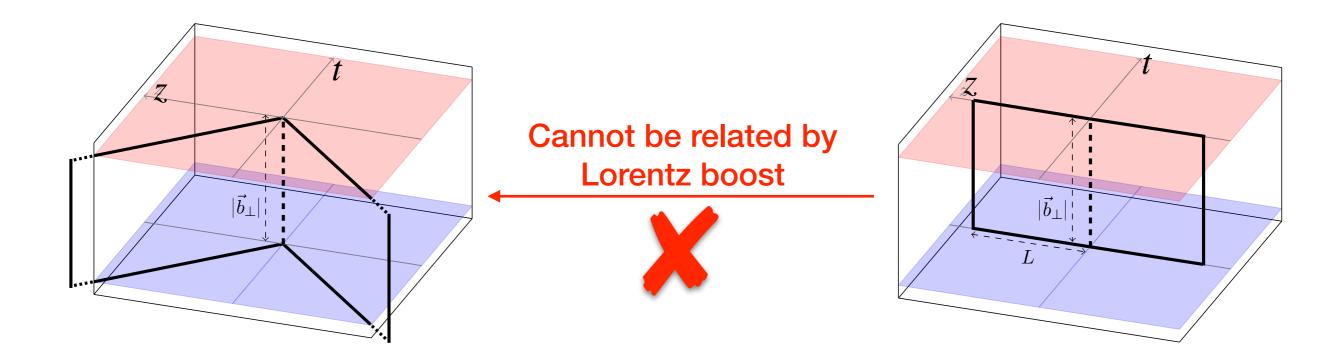


- Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019);
- M. Ebert, I. Stewart, Y.Z., PRD99 (2019), JHEP09 (2019) 037.
- Ji, Liu and Liu, Nucl.Phys.B 955 (2020), Phys.Lett.B 811 (2020).

Construction of Quasi-TMDPDF

• Quasi-soft function on lattice (naive definition):

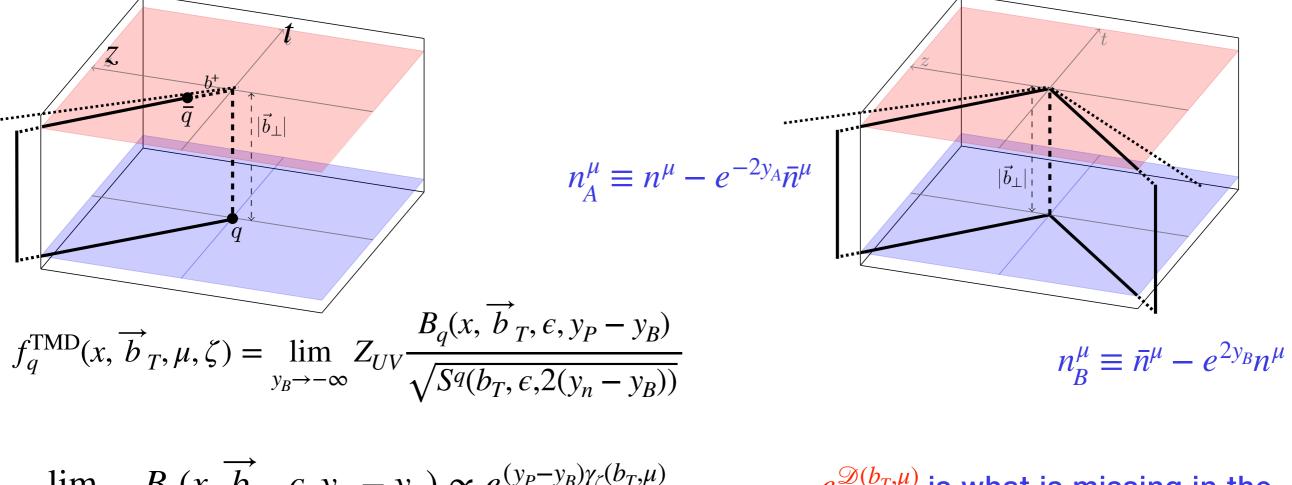
 $\tilde{S}_{q}(b_{T},a,L) = \frac{1}{N_{c}} \langle 0 | \operatorname{Tr} \left[S_{\hat{z}}^{\dagger}(\overrightarrow{b}_{T};L) S_{-\hat{z}}(\overrightarrow{b}_{T};L) S_{T}(L\hat{z};\overrightarrow{b}_{T},\overrightarrow{0}_{T}) S_{-\hat{z}}^{\dagger}(\overrightarrow{0}_{T};L) S_{n}(\overrightarrow{0}_{T};L) S_{T}(-L\hat{z};\overrightarrow{b}_{T},\overrightarrow{0}_{T}) \right] | 0 \rangle$



- Ji, Sun, Xiong and Yuan, PRD91 (2015);
- Ji, Jin, Yuan, Zhang and Y.Z., PRD99 (2019);
- M. Ebert, I. Stewart, Y.Z., PRD99 (2019), JHEP09 (2019) 037.
- Ji, Liu and Liu, Nucl.Phys.B 955 (2020), Phys.Lett.B 811 (2020).

Comparison to Collins-Soper-Sterman Scheme

Wilson lines off the light-cone: Collins, Soper and Sterman, NPB250 (1985); Collins, 2011



$$\lim_{\substack{y_P - y_B \to -\infty}} B_q(x, b_T, \epsilon, y_P - y_B) \propto e^{(y_P - y_B)\gamma_{\zeta}(b_T, \mu)}$$
$$\lim_{y_n - y_B \to -\infty} S^q(b_T, \mu, 2(y_n - y_B)) = e^{2(y_n - y_B)\gamma_{\zeta}(b_T, \mu) + \mathcal{D}(b_T, \mu)}$$

 $e^{\mathscr{D}(b_T,\mu)}$ is what is missing in the quasi soft functions, which is intrinsically Minkowskian.

A. Vladimirov, JHEP 04 (2018).

Ji, Liu and Liu, Nucl.Phys.B 955 (2020), Phys.Lett.B 811 (2020).

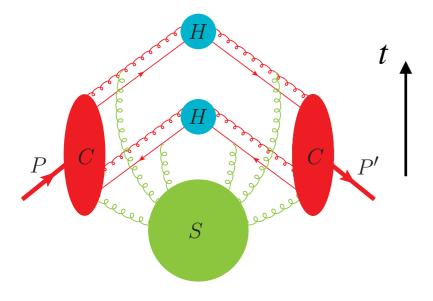
Factorization and the reduced soft function

$$\frac{\tilde{f}_{ns}^{\text{TMD}}(x,\vec{b}_{T},\mu,P^{z})}{\sqrt{S_{r}^{q}(b_{T},\mu)}} = C_{ns}^{\text{TMD}}(\mu,xP^{z}) \exp\left[\frac{1}{2}\gamma_{\zeta}^{q}(\mu,b_{T})\ln\frac{(2xP^{z})^{2}}{\zeta}\right]$$
$$\times f_{ns}^{\text{TMD}}(x,\vec{b}_{T},\mu,\zeta) + \mathcal{O}\left(\frac{b_{T}}{L},\frac{1}{b_{T}P^{z}},\frac{1}{P^{z}L}\right)$$

• M. Ebert, I. Stewart, Y.Z., PRD99 (2019), JHEP09 (2019) 037;

• Ji, Liu and Liu, Nucl.Phys.B 955 (2020), Phys.Lett.B 811 (2020);

• $S_r^q(b_T, \mu)$ from a light-meson form factor:



Ji, Liu and Liu, Nucl.Phys.B 955 (2020).

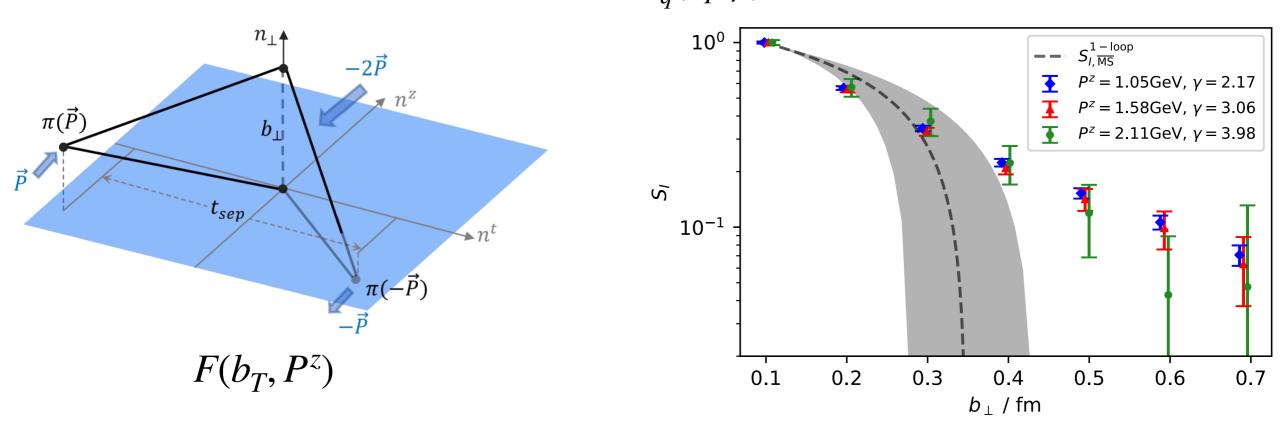
 $F(b_T, P^z)$ $= \langle \pi(-P) | j_1(b_T) j_2(0) | \pi(P) \rangle$ $= S_q^r(b_T, \mu) H(x, \mu) \otimes \Phi^{\dagger}(x, b_T, -P^z) \otimes \Phi(x, b_T, P^z)$

 Φ : Quasi-TMD distribution amplitude

$$\Phi(x, b_T, P^z) \equiv \int \frac{db^z}{2\pi} e^{ib^z(xP^z)} \langle 0 \,|\, \bar{q}(b^\mu) W_{\hat{z}} \frac{\Gamma}{2} W_T W_{\hat{z}}^{\dagger} q(0) \,|\, \pi(P) \rangle$$

Reduced soft function from lattice QCD

First lattice calculation:



 $S_q^r(b_T,\mu)$

Q.-A. Zhang, et al. (LP Collaboration), Phys.Rev.Lett. 125 (2020).

Collins-Soper kernel from lattice QCD

Collins-Soper kernel from momentum evolution of quasi-TMDs:

$$\begin{split} \gamma_{\zeta}^{q}(\mu, b_{T}) &= \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z}) \tilde{f}_{\mathrm{ns}}^{\mathrm{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{1}^{z})}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{1}^{z}) \tilde{f}_{\mathrm{ns}}^{\mathrm{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{2}^{z})} \\ &= \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z}) \tilde{B}_{\mathrm{ns}}^{\mathrm{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{1}^{z})}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{1}^{z}) \tilde{B}_{\mathrm{ns}}^{\mathrm{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{2}^{z})} \end{split}$$

Study of CS kernel through quasi-TMDs suggested in

• Ji, Sun, Xiong and Yuan, PRD91 (2015);

The concrete formalism first derived in

- Ebert, Stewart and YZ, Phys.Rev.D 99 (2019).
- Does not depend on the external hadron state;
- One can also calculate ratios of TMDPDFs with different spin structures.
 - Ebert, Schindler, Stewart and YZ, JHEP 09 (2020).

Collins-Soper kernel from lattice QCD

Collins-Soper kernel from momentum evolution of quasi-TMDs:

$$\begin{split} \gamma_{\zeta}^{q}(\mu, b_{T}) &= \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z}) \tilde{f}_{\mathrm{ns}}^{\mathrm{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{1}^{z})}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{1}^{z}) \tilde{f}_{\mathrm{ns}}^{\mathrm{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{2}^{z})} \\ &= \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z}) \tilde{B}_{\mathrm{ns}}^{\mathrm{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{1}^{z})}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{1}^{z}) \tilde{B}_{\mathrm{ns}}^{\mathrm{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{2}^{z})} \end{split}$$

Study of CS kernel through quasi-TMDs suggested in

• Ji, Sun, Xiong and Yuan, PRD91 (2015);

The concrete formalism first derived in

• Ebert, Stewart and YZ, Phys.Rev.D 99 (2019).

- Does not depend on the external hadron state;
- One can also calculate ratios of TMDPDFs with different spin structures.

• Ebert, Schindler, Stewart and YZ, JHEP 09 (2020).

The idea of forming ratios has been used in the calculation of ratios of x-moments of TMDPDFs:

Hagler, Musch, Engelhardt, Yoon, et al., EPL88 (2009), PRD83 (2011), PRD85 (2012), PRD93 (2016), arXiv:1601.05717, PRD96 (2017)

Collins-Soper kernel from lattice QCD

Collins-Soper kernel from momentum evolution of quasi-TMDs:

$$\begin{split} \gamma_{\zeta}^{q}(\mu, b_{T}) &= \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z}) \tilde{f}_{\mathrm{ns}}^{\mathrm{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{1}^{z})}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{1}^{z}) \tilde{f}_{\mathrm{ns}}^{\mathrm{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{2}^{z})} \\ &= \frac{1}{\ln(P_{1}^{z}/P_{2}^{z})} \ln \frac{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{2}^{z}) \tilde{B}_{\mathrm{ns}}^{\mathrm{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{1}^{z})}{C_{\mathrm{ns}}^{\mathrm{TMD}}(\mu, xP_{1}^{z}) \tilde{B}_{\mathrm{ns}}^{\mathrm{TMD}}(x, \overrightarrow{b}_{T}, \mu, P_{2}^{z})} \end{split}$$

Study of CS kernel through quasi-TMDs suggested in

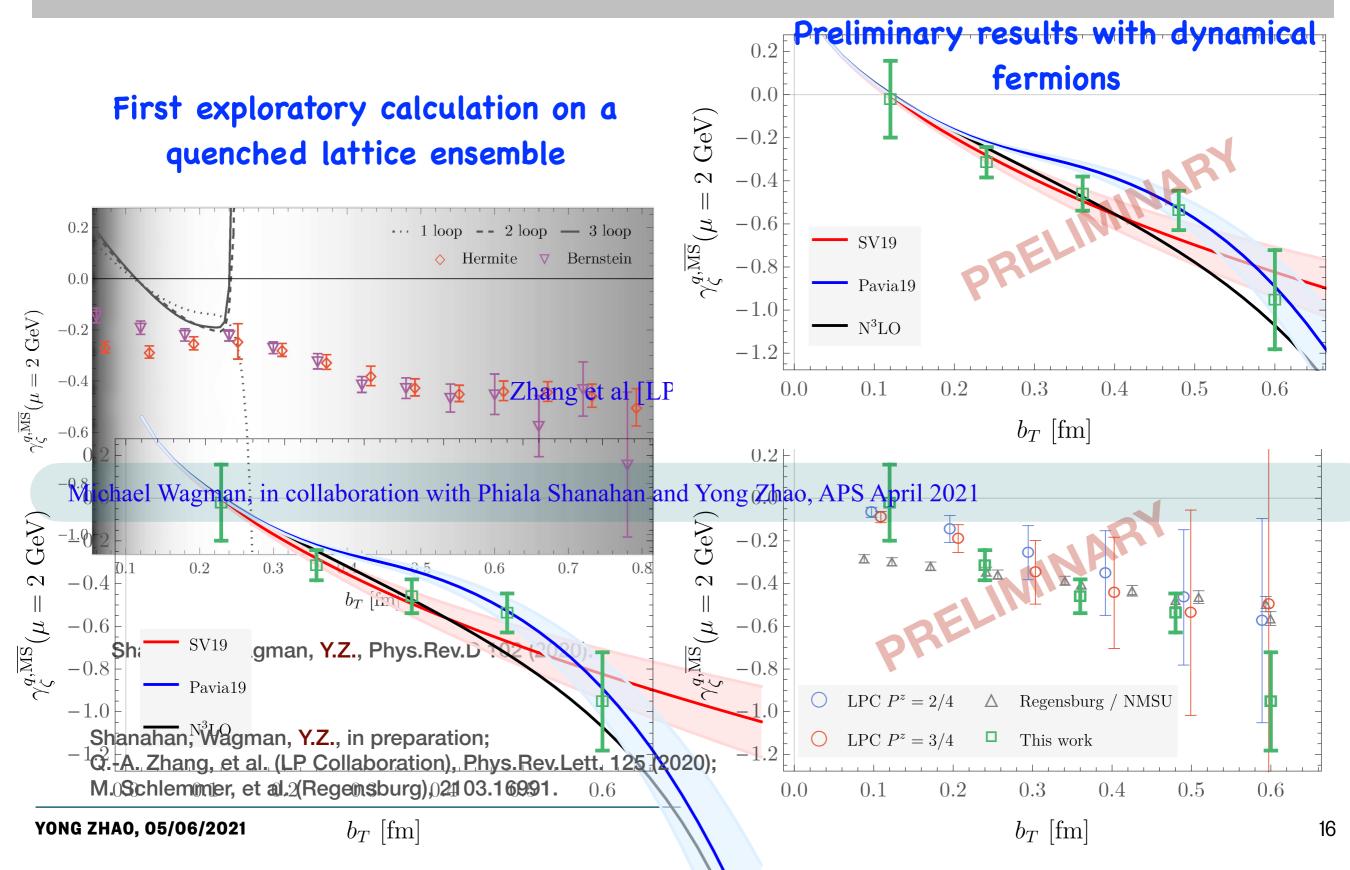
• Ji, Sun, Xiong and Yuan, PRD91 (2015);

The concrete formalism first derived in

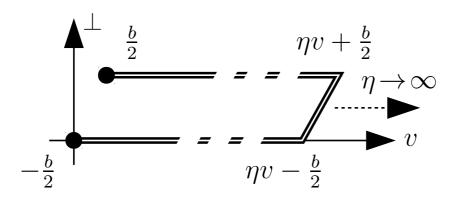
- Ebert, Stewart and YZ, Phys.Rev.D 99 (2019).
- Does not depend on the external hadron state;
- One can also calculate ratios of TMDPDFs with different spin structures.
 - Ebert, Schindler, Stewart and YZ, JHEP 09 (2020).

Shanahan, MW, Zhao, PRD 102 (2020)

Collins-Soper kernel from lattice QCD



Comparison with the Lorentz-invariant approach



Hagler, Musch, Engelhardt, Yoon, et al., EPL88 (2009), PRD83 (2011), PRD85 (2012), PRD93 (2016), arXiv:1601.05717, PRD96 (2017).

At fixed *P*, Fourier transform to obtain *x*-dependence:

Lorentz Invariant	Modern CS (y_B)	Euclidean Lattice	
$P \cdot b$	P^+b^-	$-P^zb^z$	
b^2	$-\mathbf{b}_T^2$	$-b_z^2 - \mathbf{b}_T^2$	
$\hat{\zeta} = \frac{v \cdot P}{m_p \sqrt{-v^2}}$	$\sinh(y_P - y_B)$	$\sinh(y_P)$	
$\frac{v \cdot b}{\sqrt{-v^2}}$	$\frac{-e^{y_B}b^-}{\sqrt{2}}$	$\frac{-v^z b^z - \mathbf{v}_T \cdot \mathbf{b}_T}{\sqrt{v_z^2 + v_T^2}}$	
$\eta^2 v^2$	$-\infty$	$-\eta^2(v_z^2+v_T^2)$	

TMD Handbook by the TMD collaboration.

Quasi-beam

 $-P^zb^z$

 $-b_{z}^{2}-b_{T}^{2}$

 $\sinh(y_P)$

 $-b^z$

 $-\eta^2$

$$\int \frac{d(P \cdot b)}{2\pi} e^{-ixP \cdot b} = -P^z \int \frac{db^z}{2\pi} e^{ixP^z b^z}$$

Need $xP^z \gg 1/b_T$, so that $b^z \ll b_T$, and $b^2 \approx - \, b_T^2$.

In this limit, the Lorentzinvariant approach leads to the same quasi-beam function.

Therefore, one should still need the reduced soft factor and perturbative matching $C^{\text{TMD}}(\mu, xP^z)$ to extract the TMDPDF.

Lattice QCD calculation of full TMDPDF

$$\frac{\tilde{f}_{\rm ns}^{\rm TMD}(x,\vec{b}_T,\mu,P^z)}{\sqrt{S_r^q(b_T,\mu)}} = C_{\rm ns}^{\rm TMD}(\mu,xP^z) \exp\left[\frac{1}{2}\gamma_{\zeta}^q(\mu,b_T)\ln\frac{(2xP^z)^2}{\zeta}\right] \times f_{\rm ns}^{\rm TMD}(x,\vec{b}_T,\mu,\zeta) + \mathcal{O}\left(\frac{b_T}{L},\frac{1}{b_TP^z},\frac{1}{P^zL}\right)$$

- Calculation of the quasi-beam function, renormalization and matching to the MSbar scheme;
 - M. Ebert, I. Stewart, Y.Z., JHEP 03 (2020);
 - Shanahan, Wagman, Y.Z., Phys.Rev.D 101 (2020).
- Calculation of the reduced soft function;
- Calculation of the Collins-Soper kernel (to evolve to arbitrary Collins-Soper scale).

Conclusion

- LaMET uses large-momentum hadron states to filter out collinear mode contributions, thus allowing for the extraction of parton physics from lattice QCD;
- The TMD soft function and Collins-Soper evolution kernel can both be calculated from lattice, and first results show promising signs;
- Outlook: Prediction of the full TMDPDF at initial scales to provide inputs/constraints for global analysis.