

transverse momentum dependent Fragmentation Functions

TMD Studies May 6/7 <u>Ralf Seidl (RIKEN)</u>

Fragmentation

- Fragmentation functions (FF)s:
 - What particles (and how many) get created?
 - What fraction of the initial parton momentum (z) do they carry? Scaling variable of FFs (similar to x in PDFs)
 - Use this final state information to learn about fragmenting parton flavor, spin, momentum \rightarrow nucleon structure at EIC

Access to FFs

SIDIS:
$$\sigma^{h}(x, z, Q^{2}, P_{h\perp}) \propto \sum e_{q}^{2}q(x, p_{t}, Q^{2})D_{1,q}^{h}(z, k_{t}, Q^{2})$$

- Relies on unpol PDFs
- Parton momentum known at LO
- Flavor structure directly accessible
- Transverse momenta convoluted between FF and PDF

pp:

$$\sigma^{h}(P_{T}) \propto \int_{x_{1}, x_{2}, z} \sum_{a, a' \in q, g} f_{a}(x_{1}) \otimes f_{a'}(x_{2}) \otimes \sigma_{aa'} \otimes D_{1, q}^{h}(z)$$

- Relies on unpol PDFs
- leading access to gluon FF
- Parton momenta not directly known

• e+e-:

$$\sigma^{h}(z,Q^{2},k_{t}) \propto \sum_{q} e_{q}^{2} \left(D_{1,q}^{h}(z,k_{t},Q^{2}) + D_{1,\overline{q}}^{h}(z,k_{t},Q^{2}) \right)$$

- No PDFs necessary
- Clean initial state, parton momentum known at LO
- Flavor structure not directly accessible

RIKEN

R.Seidl: Fragmentation

Belle Detector and KEKB

- Asymmetric collider
- 8GeV e⁻ + 3.5GeV e⁺
- √s = 10.58GeV (Y(4S))
- $e^+e^- \rightarrow Y(4S) \rightarrow B \overline{B}$
- Continuum production: 10.52 GeV
- e⁺e⁻→q q (u,d,s,c)
- Integrated Luminosity: >1000 fb⁻¹
- >70fb⁻¹ => continuum

TOF counter

Good tracking and particle identification! $\epsilon(K) \sim 85\%$, Si vtx. det. $\epsilon(\pi \rightarrow K) < 10\%$ 3/4 lyr. DSSD **Central Drift Chamber** small cell +He/C₂H₆

KEN

 μ / K_L detection

14/15 lvr. RPC+Fe

Single hadrons cross sections

PRD 101 (2020) 092004

- Update with better ISR correction
- Correlated and uncorrelated uncertainties separated → improve global unpolarized FF fits
 Seidl: Fragmentation

Transverse momentum generation (Popcorn)

• Transverse momentum gets generated relative to the fragmenting parton

P_τ

- What is its distribution?
- What is its angular distribution and relation to initial spin?

K_T Dependence of FFs in e⁺e⁻

- Gain also sensitivity into transverse momentum generated in fragmentation
- Two ways to obtain transverse momentum dependence
 - Traditional 2-hadron FF
 - Juse transverse momentum between two hadrons (in opposite hemispheres)
 - \rightarrow Usual convolution of two transverse momenta
 - Single-hadron FF wrt to Thrust or jet axis
 - No convolution
 - \rightarrow Need correction for $q\bar{q}$ axis (similar to a Jet function)

Thrust definition

 Event shape variable thrust is defined as:

 $T \stackrel{max}{=} \frac{\sum_{h} |\mathbf{P}_{h} \cdot \hat{\mathbf{n}}|}{\sum_{h} |\mathbf{P}_{h}|}$

- All final-state particles are included in the sum
- A two-jet-like event has a high thrust value
- A completely spherical event has a thrust value of 0.5

 Thrust axis n also defines the hemispheres

5/7/2021

Thrust distributions (lin and log)

Correction chain

Correction	Method	Systematics
PID mis-id	PID matrices (5x5 for cos θ_{lab} and p_{lab})	MC sampling of inverted matric element uncertainties, variation of PID correction method
Momentum smearing	MC based smearing matrices (2160x2160), SVD unfold	SVD unfolding vs analytically inverted matrix, reorganized binning, MC statistics
Non-qqbar BG removal	eeuu, eess, eecc, tau MC subtraction	Variation of size, MC statistics
Acceptance I (cut efficiency)	In barrel reconstucted vs udsc generated in barrel	MC statistics
Acceptance II	udsc Gen MC barrel to 4π	MC statistics, variation in tunes
Weak decay removal (optional)	udcs check evt record for weak decays	Compare to other Pythia settings
ISR	ISR on vs ISR off in Pythia	Variatons in tunes

6 thrust bins [0.5,0.7,0.8,0.85,0.9,0.95,1.0] x 18 z bins x 20 kt bins

5/7/2021

R.Seidl: Fragmentation

SR correction

Different boost of qqbar system due to ISR photon taking away energy

e.

e

All different tunes very similar except old Belle tune \rightarrow assigned as systematics -high P_{hT} drop of ratio due to ISR boost

RIKEN

11

Overall systematic uncertainties

Systematic uncertainties dominated by acceptance correction (for different tunes), PID uncertainties and ISR correction

12

Cross sections various hadrons

3

6

Fits vs P_{hT}^2

Fit exponential to smaller transverse momenta for Gaussian P_{hT} dependence and power low at higher P_{hT}

5/7/2021

RIKEN

14

Transverse momentum dependent unpol FFs:

First direct (no convolutions) measurement of z and kt dependence
Extraction of Gaussian kt widths

Gaussian widths, thrust dependence

Gaussian widths get narrower with higher Thrust

Gaussian widths comparison to MC

first direct (no convolutions) measurement of z dependence of Gaussian widths

Phenomenological Fits of cross sections I

Kang, et. al. JHEP 12 (2020) 127

<u>to</u> lir_[fb/GeV]

- SCET formalism
- Inclusion of Thrust axis possible in similar way to Jet functions TMD and threshold resummation needed
- TMD region of j_T<<Q
- Additional descript for high-z region

Phenomenological Fits of cross sections II

Boglione, Simonelli JHEP 02 (2021) 076

- NLO and NLL description of cross sections, based on NNFF1.0_NLO
- Collinear parts of phase space need to be cut out (esp. high P_T)
- Intermediate Thrust range can be described well
- High thrust and high z range would need different pheno treatment

Other Belle fragmentation measurements

5/7/2021

Single Λ polarization measurements

- Related to open question about Λ polarization in hadron collisions from 40 years ago!
- Fragmentation counterpart to the Sivers Function:

unpolarized parton fragments into transversely polarized baryon with transverse momentum wrt to parton direction

• Reconstruct Λ , its transverse momentum and polarization

YingHui Guan (Indiana/KEK): PRL 122 (2019), 042001

Transverse momentum dependence

- Different behavior for low and high-z :
- At low z small
- At intermediate z falling Polarization with kt
- At high z increasing polarization with kt

Opposite hemisphere pion correlation

- Interesting z_{π} and z_{Λ} dependence :
- At low z_{Λ} light quark fragmentation dominant, some charm in $\pi^{-} \rightarrow$ different signs
- At high z_Λ strange + charm fragmentation more relevant → same signs

5/7/2021

	Single hadron measurements		
Unpolarized ingredients	Polarized ingredients	Flavor sensitivity	
Single hadron cross sections: $e^+e^- \rightarrow hX$ $D^h_{1,q}(z,Q^2)$	Azimuthal asymmetries: $e^+e^- \rightarrow (h)(h)X,$ $\cos(\phi_1 + \phi_2)$ $H_{1,q}^{\perp(1)h}(z,Q^2)$	Unpol SIDIS, pp: $\frac{d\sigma}{dz}$ $e^+e^- \rightarrow (h)(h)X$ PRD92 (2015) 092007	
PRL111 (2013) 062002 PRD101(2020) 092004	PRL 96 (2006) 232002 PRD 78 (2008) 032011	and scale dependence	
Transverse momentum dependent FFs: $e^+e^- \rightarrow (h)X$ $D^h_{1,q}(z, \mathbf{k_T}, Q^2)$	Transverse momentum dependent asymmetries $e^+e^- \rightarrow (h)(h)X,$ $\cos(\phi_1 + \phi_2), Q_t$ $H_{1,q}^{\perp h}(z, k_T, Q^2)$	BELLE	
PRD 99 (2019) 112006	PRD100 (2019) 92008		
Dihadron measurements			
Unpolarized ingredients	Polarized ingredients	Flavor sensitivity	
Dihadron cross sections $e^+e^- \rightarrow (hh)X$	Azimuthal asymmetries: $e^+e^- \rightarrow (hh)(hh)X$,	Unpol SIDIS, pp:	
$\frac{D_{1,q}^{n_1n_2}(z,m,Q^2)}{\frac{PRD96 (2017) \ 032005}{PRD101 (2020) \ 092004}}$	$\cos(\phi_1 + \phi_2),$ $H_{1,q}^{h_1,h_2,\triangleleft}(z,Q^2,M_h)$ PRL107 (2011) 072004	$\frac{d^2\sigma}{dzdm}$ 24	

other FF related measurements (ongoing or planned)

- Extension of di-hadron measurements to any resonant hadron possible:
 - K_s, K*,φ, ρ, etc
- πK and KK IFF
 measurements
- Multidimensional Collins analysis for pions and kaons

- Especially rho mesons might be of interest for explaining the muon discrepancy in cosmic air shower models
- Explicitly study scale dependence of kt dependent FFs using ISR photons

25

Summary

- Fragmentation functions provide important input for the understanding of QCD as well as the nucleon structure
- The e⁺e⁻ annihilation experiments, in particular Belle, have provided nearly all relevant measurements:
 - Single and dihadron cross sections
 - Collins and Interference FF asymmetries
 - Transverse momentum dependence
- Baseline for all semi-inclusive EIC measurements

- P_{hT} dependent cross sections and Gaussian widths extracted
 - Very clear z dependence of widths, not as assumed by phenomenologists
 - Pions and kaons similar, protons narrower (diquarks?)
- Polarizing Lambda fragmentation measured
- Various cross sections for light hadrons, heavy baryons, dihadrons, etc available
- More Belle measurements ongoing (di-hadron kt, Collins)

26