Exploring Large-x Phase Space Boundaries at the EIC

Christopher Dilks

Workshop on TMD Studies from JLab to EIC May 2021

TMD PDFs

 S_L and S_T : Target Polarizations; λ e: Beam Polarization x: momentum fraction carried by struck quark, z: fractional energy of hadron

S_L and S_T: Target Polarizations; Ae: Beam Polarization x: momentum fraction carried by struck quark, z: fractional energy of hadron

C. Dilks

Motivation

- Goal: measure asymmetries at large $x \sim 10^{-1}$
- Could go to large Q², but asymmetry may decrease as Q² increases; very high Q² would push above PID limits
- \blacksquare What are the limitations at small Q², large x?
- Ideal situation: (x,Q^2) -overlap data from JLab to EIC, but what do we need to do to get there?

A. Vladimirov, IR2@EIC workshop, Mar 2021

- ullet EIC: study p_T and Q^2 dependence of asymmetries in wide kinematic range
- Comparisons with JLab, HERMES, and COMPASS, to pin down p_T dependence and evolution
- Non-overlapping regions between EIC and JLab could be problematic for evolution studies
- Need control over reconstruction at low y and low p₊

EIC Coverage Limits

C. Dilks

PID Limits

 $\eta = 1$

 $\eta = -1$

EIC Coverage Limits

C. Dilks

PID Limits

 $\eta = 1$

 $\eta = -1$

EIC Coverage Limits

PID Limits

 $\eta = 1$

 $\eta = -1$

Kinematics Reconstruction Methods

- SIDIS kinematics depends on what is used to reconstruct quantities such as x and Q²
 - Scattered electron
 - Hadrons
 - Some mixture


```
Leptonic variables
                                                                  q \equiv q_1 = k_2 - k_1, \quad y_1 = p_1 \cdot (k_1 - k_2) / p_1 \cdot k_1
Hadronic variables [81] q \equiv q_h = p_2 - p_1, \quad y_l = p_1.(p_2 - p_1)/p_1.k_1
 Jacquet-Blondel variables Q_{JB}^2 = (\vec{p}_{2,\perp})^2/(1-y_{JB}), \quad y_{JB} = \Sigma/(2E(k_1))
                                                                  \Sigma = \sum_{h} (E_h - p_{h,z})
 Mixed variables 81
                                                                  q = q_l, y_m = y_{JB}
                                                                 Q_{DA}^2 = \frac{4E(k_2)^2 \cos^2(\theta(k_2)/2)}{\sin^2(\theta(k_2)/2) + \sin(\theta(k_2)/2) \cos(\theta(k_2)/2) \tan(\theta(p_2)/2)},
Double angle method [83]
                                                                 y_{DA} = 1 - \frac{\sin(\theta(k_2)/2) + \sin(\theta(k_2)/2)}{\sin(\theta(k_2)/2) + \cos(\theta(k_2)/2) \tan(\theta(p_2)/2)},
Q_{\theta y}^2 = 4E(k_2)^2 (1 - y_{JB}) \frac{1 + \cos(\theta(k_2))}{1 - \cos(\theta(k_2))}, \quad y_{\theta y} = y_{JB}
\theta y \ method \ 84
                                                                 Q_{\Sigma}^{2} = \frac{(\vec{k}_{2,\perp})^{2}}{1 - y_{\Sigma}}, \quad y_{\Sigma} = \frac{\Sigma}{\Sigma + E(k_{2})[1 - \cos(\theta(k_{2}))]}
Q_{e\Sigma}^{2} = Q_{l}^{2}, \quad y_{e\Sigma} = \frac{Q_{l}^{2}}{sx_{\Sigma}}
\Sigma method 85
e\Sigma method 85
```

Mean relative deviation in z (10x100)

C. Dilks

Mean relative deviation in $p_{\scriptscriptstyle T}$ (10x100)

C. Dilks

z and $p_{\scriptscriptstyle T}$ Resolutions

$$0.4 \text{ GeV} < P_{hT} < 0.6 \text{ GeV},$$

 $0.4 < z < 0.5$

z resolutions

EIC 5×41	x range				
$Q^2 \text{ range}(\text{GeV}^2)$	0.0001-0.003	0.003 - 0.01	0.01 - 0.03	0.03-0.1	0.1 - 0.5
30–100	_	_	_	0.011	0.029
10-30	_	_	0.014	0.021	0.080
5-10	_	0.017	0.020	0.088	0.17
3–5	_	0.017	0.044	0.14	0.13
1–3	0.017	0.032	0.11	0.17	_

0.05<y<0.95

*kinematics reconstructed from electron

p_{τ} resolutions

EIC 5×41	x range				
Q^2 range(GeV ²)	0.0001 - 0.003	0.003 – 0.01	0.01 - 0.03	0.03 - 0.1	0.1 - 0.5
30-100	_	_	_	0.030	0.15
10-30	_	_	0.022	0.059	0.24
5-10	_	0.021	0.040	0.17	0.34
3–5	_	0.025	0.069	0.21	0.29
1–3	0.021	0.035	0.11	0.19	_

x Resolutions

$$0.4 \text{ GeV} < P_{hT} < 0.6 \text{ GeV},$$

 $0.35 < z < 0.4$

Compare different y_{min} values

0.01 < y < 0.95	x range			
$Q^2 \operatorname{range}(\operatorname{GeV}^2)$	0.0001 – 0.01	0.01 - 0.03	0.03 - 0.1	0.1 – 0.5
10-100	_	0.0006	0.003	0.060
5-10	0.00018	0.0015	0.021	0.198
3–5	0.00039	0.0030	0.042	0.168
1–3	0.00072	0.0072	0.063	0.120

*kinematics reconstructed from electron

0.05 < y < 0.95	x range			
$Q^2 \text{ range}(\text{GeV}^2)$	0.0001 – 0.01	0.01 – 0.03	0.03 – 0.1	0.1 - 0.5
10-100	_	0.0006	0.003	0.042
5-10	0.000018	0.0015	0.921	0.060
3–5	0.00039	0.0030	0.024	0.033
1–3	0.00066	0.0066	0.018	

Goal: Explore low-y region (large x, small Q²): Vary minimum y limit, and check impact on p_{τ} , $q_{\tau}=p_{\tau}/z$, and q_{τ}/Q

- ◆ Event generation: 1M events from pythaeRHIC (6), 5x41 GeV
- ◆ Fast simulation: eic-smear (via ESCalate v1.1.0)
- ◆ Kinematics reconstruction: highest-E electron

Event Selection Criteria

- $=\pi+\pi$ dihadron channel
- W > 3 GeV
- $y_{min} < y < 0.95 \text{ (vary y}_{min}$)
- $z_{pair} < 0.95$
- $z_{pion} > 0.2$ (effectively $z_{pair} > 0.4$)
- \blacksquare pion p_{T lab} > 100 MeV (tracking limit)
- $\overline{}$ pion $x_F > 0$
- $\mathbb{Q}^2 > 1 \text{ GeV}^2$ (generator level)

Two x bins:

- Small x: x<0.05
- Large x: x>0.05

Two z bins:

- 0.2 < z < 0.3
- 0.3 < z < 1

note: some plots use notation p_{perp} or p_{\perp} ; they denote the same as $p_{\scriptscriptstyle T}$:

the component of the pion momentum transverse to q, in the proton rest frame

TMD Region Classification

C. Dilks

1904.12882 [hep-ph]

Q² vs. x for selected dihadrons

Q² vs. x for selected dihadrons

p₊ Distributions for varying y_{min} in 2 bins of z

300

200

100

0.2 0.4 0.6 0.8

 $\pi^+ p_{perp} [GeV]$

low p_{τ} region has relatively larger suppression

1 1.2 1.4 1.6

1 1.2 1.4 1.6

π⁺ p_{perp} [GeV]

0.2

0.2 0.4 0.6 0.8

 $\pi^+ p_{perp}$ [GeV]

correlation between fragmenting particle and spin larger at high z, where suppression by y_{min} is worse

C. Dilks

30

p_{T} Distributions for varying y_{min}

suppression worse at higher y_{min} , but similar relative trend

note: suppression trends for q_T look similar (see backup slides)

C. Dilks

0.3 < z < 1

q₋/Q Distributions for varying y_{min}

p_⊤ Distributions for varying y_{min}

in 2 bins of q₋/Q

$$y_{min} = 0.03$$

 $q_{T}/Q < 0.25$

 $\pi^{\scriptscriptstyle +}$ $p_{\scriptscriptstyle perp}^{\scriptscriptstyle -},$ for Full Q² and 0.05<x<1

suppression localized to low p_−

> (see backup slides for comparison with $q_{-}/Q < 1)$

1200

suppression worsens as p_⊤ decreases

C. Dilks

33

In high-x bin, as y_{min} increases, minimum Q^2 increases \rightarrow imparts limits on q_T/Q In low-x bin, minimum Q^2 stays at 1 GeV² for any y_{min} Q^2 vs. x for selected dihadrons

In high-x bin, as y_{min} increases, minimum Q^2 increases \rightarrow imparts limits on q_T/Q

Similar story for q_{τ}/Q vs p_{τ} correlation (see backup slides)

y_{\min} does not affect boundaries in low-x bin, since minimum Q^2 is not affected

Vector Meson Decays → **Muddy the Waters for Interpretation** $\pi^+\pi^-$ M_b distribution, for Full Q² and 0.05<x<1 $q_{_T}(\rho)/Q$ vs. $q_{_T}(\pi^*)/Q$, for Full Q^2 and 0.05<x<1

- Select $\rho \rightarrow \pi^+\pi^-$ dihadrons, and calculate q_+/Q using the ρ , vs. using the π^+
- Pion $q_{\tau}/Q\sim1$ could correspond to ρ-meson $q_{\tau}/Q<<1$
- VM decays can confuse TMD region classification
- Trend unaffected by y_{min} cuts

data not

C. Dilks

Summary

- \bullet Interested in TMDs at large x (x>0.05), where spin-orbit correlations are likely relevant
 - Large Q² may have smaller asymmetries
 - Better to look at small Q², where electron and hadron are detected at small scattering angles
 - Minimum y restricts phase space at large x and small Q²
- Overlap from JLab to EIC vital for evolution studies, providing a more complete picture
 - Limitations at low-y at the EIC:
 - ➤ Smaller p₊
 - \rightarrow Poorer resolutions (z, p_{τ}, x)
 - Increasing minimum y causes:
 - \rightarrow Losses at small p_{τ} and small q_{τ}
 - ▶ Localized losses at small p_{τ} for q_{τ}/Q <0.25
 - Larger losses at large q_T/Q than at small q_T/Q
 - Increase minimum Q² (given x>0.05)
- Vector mesons muddy the waters
 - A pion with large $p_T/z/Q$, considered outside the TMD region, could come from a VM with small $p_T/z/Q$, well within the TMD region

backup

Kinematic Coverage for y > 0.025

H. Avakian, REF2020, Dec 9

Kinematics Reconstruction Methods

Low Q² and large x kinematics in EIC: P_T-distributions

For large x(x>0.05) large y cuts can significantly change P_T -distributions

H. Avakian, REF2020, Dec 9

p_{T} Distributions for varying y_{min}

in 2 bins of q₋/Q

suppression worse at higher y_{min} , but similar relative trend

q_T/Q Distributions for varying y_{min}

p_{T} Distributions for varying y_{min}

in 2 bins of q₋/Q

$$y_{min} = 0.03$$

$$q_{T}/Q < 0.25$$

p_{T} Distributions for varying y_{min}

in 2 bins of q₋/Q

$$y_{min} = 0.05$$

$$q_T/Q < 0.25$$

q_T Distributions for varying y_{min}

in 2 bins of z

$$y_{min} = 0.03$$

similarly, low $\mathbf{q}_{\scriptscriptstyle T}$ has larger relative suppression

q_T Distributions for varying y_{min} in 2 bins of z

 $y_{min} = 0.05$

0.2 < z < 0.3

q_T/Q Distributions for varying y_{min}

in 4 quantiles of Q²

q_T/Q Distributions for varying y_{min}

in 4 quantiles of Q²

Vector Meson Decays → **Muddy Waters for Interpretation**

high-z $\rho \rightarrow \text{small-z pion}$

 $p_{\scriptscriptstyle T}$ s are somewhat similar

high- q_{τ} pion from small- q_{τ} ρ

