SIDIS with Solenoidal Large Intensity Device (SoLID) – Brief Overview

Haiyan Gao **Duke University**

On behalf of the SoLID Collaboration

Acknowledgement: X. Li, T. Liu, V. Khachatryan, Z. Zhao, J.P. Chen, Z.-E. Meziani, P. Souder, Jianwei Qiu, X. Zheng, and many others in the SoLID collaboration, supported in part by the U.S. Department of Energy under contract number DE-Jefferson Lab FG02-03ER41231

1

SoLID@12-GeV JLab: QCD at the intensity frontier

SoLID will maximize the science return of the 12-GeV CEBAF upgrade by combining...

(DOE science review March 8-10, 2021)

High Luminosity 10³⁷⁻³⁹/cm²/s [>100x CLAS12][>1000x EIC]

Large Acceptance Full azimuthal ϕ coverage

Research at **SoLID** will have the *unique* capability to explore the QCD landscape while complementing the research of other key facilities

- Pushing the phase space in the search of new physics and of hadronic physics
- 3D momentum imaging of a relativistic strongly interacting confined system (<u>nucleon spin</u>)
- Superior sensitivity to the differential electro- and photo-production cross section of J/ψ near threshold (proton mass)

Synergizing with the pillars of EIC science (proton spin and mass) through high-luminosity valence quark tomography and precision J/ψ production near threshold

https://solid.jlab.org/

SoLID in Hall A

Plan for installing SoLID in Hall A with other equipment moved out of the way.

SIDIS with polarized "neutron" and proton @ SoLID

- E12-10-006:
Rating ASingle Spin Asymmetries on Transversely Polarized ³He @ 90 days
Spokespersons: J.P. Chen, H. Gao (contact), J.C. Peng, X. Qian
- E12-11-007:Single and Double Spin Asymmetries on Longitudinally Polarized ³He @ 35 daysRating ASpokespersons: J.P. Chen (contact), J. Huang, W.B. Yan
- E12-11-108:Single Spin Asymmetries on Transversely Polarized Proton @ 120 daysRating ASpokespersons: J.P. Chen, H. Gao (contact), X.M. Li, Z.-E. Meziani

Run group experiments approved for TMDs, GPDs, and spin

SoLID-SIDIS and Subsystems

- Coincidence detection of electrons and charged pions: good pid for electrons (LGC+EC); moderate PID for pions (HGC)
- ³He target: transverse and longitudinal in-beam polarizations of ~60%; NH₃ target: in-beam transverse polarization ~70%
- Large acceptance with full azimuthal coverage @ pol. Lumi. 10³⁶ cm⁻² s⁻¹ (³He), 10³⁵ cm⁻² s⁻¹ (NH₃); 4-d kinematic binning requires good momentum and angular resolutions – GEMs offer excellent tracking capability
- DAQ rate: up to 100 KHz (unpol. Lumi 10³⁷ cm⁻² s⁻¹ (³He))

SIDIS&J/ Ψ :

MRPC: enhanced configuration for kaon and improved pion detection

SoLID-SIDIS particle identification

SoLID-SIDIS Kinematic coverage

Projected SoLID data samples

8

Source (Type): ³ He (preCDR and E12-10-006)	Collins π ⁺	Collins π ⁻	Sivers π⁺	Sivers π^-
Raw asymmetry (Abs.) / Detector resolution (Abs.)	1.4 ×10 ⁻⁴ / < 10 ⁻⁴			
Target polarization (Rel.)	3% + 0.5%	3% + 0.5%	3% + 0.5%	3% + 0.5%
Random coincidence (Rel.)	0.2%	0.2%	0.2%	0.2%
Nuclear effects (Rel.)	4% + 1.2%	4% + 1.2%	5% + 1.2%	5% + 1.2%
Diffractive meson (Rel.)	3%	2%	3%	2%
Radiative corrections (Rel.)	2%	2%	3%	3%
Total (Abs.) / Total (Rel.)	1.4 ×10⁻⁴ / 6.3%	1.4 ×10 ⁻⁴ / 5.9%	1.4 ×10 ⁻⁴ / 7.3%	1.4 ×10 ⁻⁴ / 7.0%

Source (Type): NH_3 (preCDR and E12-11-108)	Collins π ⁺	Collins π ⁻	Sivers π ⁺	Sivers π ⁻
Raw asymmetry (Abs.) / Detector resolution (Abs.)	6.5 ×10 ⁻⁴ / < 10 ⁻⁴			
Target polarization (Rel.)	3% + 0.5%	3% + 0.5%	3% + 0.5%	3% + 0.5%
Random coincidence (Rel.)	0.2%	0.2%	0.2%	0.2%
Dilution (Rel.)	5%	5%	5%	5%
Diffractive meson (Rel.)	3%	2%	3%	2%
Radiative corrections (Rel.)	2%	2%	3%	3%
Total (Abs.) / Total (Rel.)	6.5 ×10 ⁻⁴ / 6.9%	6.5 ×10 ⁻⁴ / 6.5%	6.5 ×10 ⁻⁴ / 7.2%	6.5 ×10 ⁻⁴ / 6.9%

SoLID impact on tensor charge and confined motion

- Tensor charge: a fundamental QCD quantity to test lattice QCD
- Probe new physics combined with EDMs

$$\langle P, S | \bar{\psi}_q i \sigma^{\mu\nu} \psi_q | P, S \rangle = g_T^q \, \bar{u}(P, S) i \sigma^{\mu\nu} u(P, S)$$

$$g_T^q = \int_0^1 [h_1^q(x) - h_1^{\bar{q}}(x)] dx$$

$$d_n = g_T^d d_u + g_T^u d_d + g_T^s d_s$$

SoLID impact on tensor charge

FLAG review 2019: 1902.08191 Relative uncertainty 4% (u), 7% (d)

JAM20: arxiv:2002.08384

- Sivers: an example of TMDs
- Confined quark motion inside nucleon
- Quantum correlations between nucleon spin and quark motion

Image from J. Dudek et al., EPJA 48,187 (2012)

Image credit: D. Pitonyak

