Extraction of TMD distributions from data

Alexey Vladimirov

(Regensburg University)

Workshop: TMD Studies: from JLab to EIC May 7, 2021

$\operatorname{Extraction}$ of TMD with <code>artemide</code>

- ▶ Main features
 - Position space
 - ζ-prescription
 - ▶ (maximum) Perturbative matching
 - Strict data cuts
- ▶ Code
 - ▶ artemide
 - ▶ Fortran 95
 - https://github.com/VladimirovAlexey/artemide-public
 - artemide-DataProcessor
 - ▶ Python
 - https://github.com/VladimirovAlexey/artemide-DataProcessor

Universality & the chain of extractions

In my talk I am going to focus on particular aspects of TMD phenomenology

Data selection for TMD factorization

- ▶ Theoretical justification
- ▶ Experimental evidence
- Impact on present and future data-sets

PDF-bias and problem of TMD modeling

- ▶ Structure of (modern) TMD models
- ▶ PDF-bias
- ► Flavor dependence (work in progress)

Problem with determination of CS-kernel

- ▶ Correlation between TMDs and CS-kernel
- ζ-prescription

UR

UR

Part I Data cuts

TMD factorization is a systematic expansion of hadronic tensor in power of $\frac{q_T}{Q}$

- Leading-power term is well-investigated
- ▶ Something is known about NLP W_1 (factorization is not proven)
- ▶ Nothing is known about NNLP W_2

Important: TMD factorization is $Q \to \infty$, q_T =fixed. Could be corrections $\sim \frac{\Lambda}{Q}$ even at $q_T \to 0$.

Factorization regions

$$q_T \lesssim \delta Q$$
 TMD factorization $= \begin{cases} q_T \lesssim \Lambda & \text{nonpertrubative regime} \\ q_T \gg \Lambda & \text{"resummation" regime} \end{cases}$

 $q_T \sim Q \gg \Lambda$ collinear factorization

Here I draw $\delta = 0.25$, how to justify this choice?

$$\delta^2 = \frac{q_T^2}{Q^2} \sim 0.06 \ll 1$$

tät Regensburg

q_T for SIDIS

The factorization for SIDIS is done in the Breit frame

TR

Value of δ from the data

- Fit data at some small $\delta~(\chi/N_{pt}\sim 1)$
- **2** Increase δ and fit again, starting from the previous minimum (repeat)

3 At some moment the χ^2/N_{pt} blows up

[Scimemi, AV, 1706.01473]

Data indicates that $\delta \sim 0.2 - 0.25$

$\mathbf{But...}$

- ▶ For asymmetries (ratios of cross-section) δ could be larger
- > The method outcome strongly dependents on precision of the data
 - ▶ Precise data \rightarrow more sensitivity to small effects, e.g. power corrections
 - \blacktriangleright E.g. for ATLAS (~ 0.5% accuracy) at $\delta \sim 0.2$ deviation is $\sim 2-3\%$:(
 - ▶ E.g. for CDF (~5% accuracy) at $\delta \sim 0.2$ deviation is $\sim 2 3\%$:)
- ▶ There could be models which **incorporates** power corrections to factorization into NP-behavior of TMDs
 - ▶ The result of extraction is not a TMD distribution (although it could perfectly describe the data), e.g. it violates universality
 - \blacktriangleright Anyway, at some moment TMD factorization fails (\rightarrow next slide)

The cross-section with LP TMD factorization eventually became negative. It happens at large q_T

- \blacktriangleright The position of node depends also on process and x
- ▶ For large-Q bins the node can go down to $q_T/Q \sim 0.35 \; (\pi \text{DY at COMPASS!})$

The negative cross-section is a small-b problem

$$d\sigma \simeq \int d^2 b e^{-ibq_T} W(b) \simeq \int db b J_0(bq_T) W(b)$$

When 2D Fourier is positive definite?

- ▶ 1D cos-transformation \rightarrow Bochner's theorem \rightarrow "non-growing function"
- ▶ Generally, it is a complicated question see e.g.[Giraud,Peschanski,1405.3155]
- ▶ The first requirement(but not sufficient): W(b) has maximum at b = 0.

This fall down is (mainly) due to TMD perturbative evolution !

$$W(b,Q;x,z) \simeq R(b,Q)^2 F(x,b) D(z,b)$$

▶ In ζ -prescription F and D are (almost) monotonous functions

$$\blacktriangleright R(b,Q) = \exp(-\mathcal{D}(b,Q)\ln(Q^2/\zeta_Q(b)))$$

This fall down is (mainly) due to TMD perturbative evolution !

$$W(b,Q;x,z) \simeq R(b,Q)^2 F(x,b) D(z,b)$$

► In ζ -prescription F and D are (almost) monotonous functions

 $\blacktriangleright \ R(b,Q) = \exp(-\mathcal{D}(b,Q)\ln(Q^2/\zeta_Q(b)))$

Perturbation theory = predictive power

Difference between NNLO and N^3LO is not that important Difference between NLO and NNLO is important (especially at low-energy!)

Perturbation theory = predictive power

B.Bilin, DIS2021

TR

Principal problem for asymmetries

 ${\rm asymmetry} \simeq \frac{{\rm something}}{F_{UU}}$

• Eventually $F_{UU} = 0$ (in TMD factorization)

Cutting present data : Sivers asymmetry

Dataset name	Ref.	Reaction	# Points	
		$d^{\uparrow} + \gamma^* \rightarrow \pi^+$	1 / 9	
Compass08	[36]	$d^{\uparrow} + \gamma^* \rightarrow \pi^-$	1/9	
		$d^{\uparrow} + \gamma^* \rightarrow K^+$	1/9	
		$d^{\uparrow} + \gamma^* \to K^-$	1 / 9	
Compage16	[30]	$p^{\uparrow} + \gamma^* \rightarrow h^+$	5 / 40	
Compussio	[00]	$p^{\uparrow} + \gamma^* \rightarrow h^-$	5 / 40	
Hermes		$p^{\uparrow} + \gamma^* \rightarrow \pi^+$	11 / 64	
	[35]	$p^{\uparrow} + \gamma^* \rightarrow \pi^-$	11 / 64	
		$p^{\uparrow} + \gamma^* \rightarrow K^+$	12 / 64	
		$p^{\uparrow} + \gamma^* \rightarrow K^-$	12 / 64	
JLab	[41, 42]	$p^{\uparrow} + \gamma^* \rightarrow \pi^+$	1/4	
		$p^{\uparrow} + \gamma^* \rightarrow \pi^-$	1/4	
		$p^{\uparrow} + \gamma^* \rightarrow K^+$	1/4	
		$p^{\uparrow} + \gamma^* \rightarrow K^-$	0 / 4	
SIDIS total			63	
CompassDY	[40]	$\pi^- + d^\uparrow \to \gamma^*$	2 / 3	
Star.W+		$p^{\uparrow} + p \rightarrow W^+$	5 / 5	
Star.W-	[43]	$p^{\uparrow} + p \rightarrow W^{-}$	5 / 5	
Star.Z		$p^{\uparrow} + p \rightarrow \gamma^*/Z$	1 / 1	
DY total			13	
Total			76	

Conclusion for part 1

▶ There is a natural limit of TMD factorization $q_T < (0.2 - 0.3)Q$

- This limit is required from by theory
- ▶ This limit is also seen in the data
- Pushing this limit higher does not help practically
 - ▶ At $q_T \sim 0.5Q$ cross-section become negative
 - It is pure perturbative effect
- ▶ Ways out:
 - ▶ Interpolate to fix order (works only at large Q)
 - ▶ Introduce b_{min}
 - Go to power corrections
 - ...

▶ A lot of stuff to explore especially at lower energy JLab \rightarrow EIC

Part II PDF-bias

21 / 42

TMD distributions are independent 3D function for each flavor $\text{TMDPDF} = F(x, b), \quad \text{TMDFF} = D(z, b)$ **Too much freedom!**

Current status of the small-b matching

		Twist of	Twist-2	Twist-3	Order of	
Name	Function	leading	distributions	distributions	leading power	Ref.
		matching	in matching	in matching	coef.function	
unpolarized	$f_1(x,b)$	tw-2	$f_1(x)$	-	N ³ LO (α_s^3)	[21, 22]
Sivers	$f_{1T}^{\perp}(x,b)$	tw-3	-	T(-x, 0, x)	NLO (α_s^1)	[23]
helicity	$g_{1L}(x,b)$	tw-2	$g_1(x)$	$T_g(x)$	NLO (α_s^1)	[16, 17]
worm-gear T	$g_{1T}(x,b)$	tw-2/3	$g_1(x)$	$T_g(x)$	LO (α_s^0)	[13, 14]
transversity	$h_1(x,b)$	tw-2	$h_1(x)$	$T_h(x)$	NNLO (α_s^2)	[19]
Boer-Mulders	$h_1^{\perp}(x, b)$	tw-3	-	$\delta T_{\epsilon}(-x,0,x)$	LO (α_s^0)	[14]
worm-gear L	$h_{1L}^{\perp}(x,b)$	tw-2/3	$h_1(x)$	$T_h(x)$	LO (α_s^0)	[13, 14]
pretzelosity	h_{1T}^{\perp}	tw-3/4	-	$T_h(x)$	LO (α_s^0)	eq.(4.8)

refs. are defined in [V.Moos,AV,2008.01744]

▶ Twist-2 and twist-3 contributions at all powers of b^2 (tree)

► Typical expression (here for Sivers function):

$$f_{1T}^{\perp}(x,b) = \pm \pi \Big\{ T_q(x) + \sum_{n=1}^{\infty} \left(\frac{x^2 b^2 M^2}{4} \right)^n \int_0^1 du \int dy \frac{\delta(x-uy)}{(n+1)!(n-1)!} \left(\frac{\bar{u}}{u} \right)^n \frac{1+(n-1)u+u^2}{1-u} T_q(y) \Big\}$$

▶ T(x) = T(-x, 0, x) is Qiu-Sterman function

 \blacktriangleright TMDs_{proton} ~ TMDs_{nuclei}

Non-trivial matching for pretzelosity

• Leading term:
$$h_{1T}^{\perp}(x,b) = -x^2 \int_x^1 \frac{du}{u} \frac{1-u^2}{u} \mathcal{T}_h\left(\frac{x}{u}\right) + \text{tw-4}$$

Universität Regensburg

Matching is essential part on nowadays TMD phenomenology

- ▶ The region 5GeV $\lesssim q_T < 0.25Q$ is accurately described by $f_{NP} \sim 1$ ▶ LHC, Tevatron, RHIC, (→ EIC)
- ▶ It is observed that q(x) carries the most part of x-dependence. I.e. $f_{NP}(x,b) \sim f_{NP}(b)$
 - Greatly reduces the parametric freedom
- ▶ It is observed that $q_f(x)$ carries the most part of the flavor dependence, i.e. $f_{NP}(x, b) \sim$ flavor-independent
- ▶ In fact, the simplest model $F_f(x,b) \sim C \otimes q_f(x) f_{NP}(b)$ capable to describe the most part of the data rather accurately

Matching to PDF leads to high predictive power, but is also a pitfall \rightarrow

Result of a TMD fit is 100% dependent on PDF in use!

- ▶ Different PDF set are different
 - ▶ Especially in a "TMD-important" region x ~ 0.1 - 0.5
 - Different flavor decomposition

► As the result:

PDF & FF sets	χ^2/N_{pt}	
HERA20 & DSS	0.76	
HERA20 & JAM19	0.93	
NNPDF31 & DSS	1.00	
NNPDF31 & JAM19	1.65	
HERA20 & DSS (N^3LO)	0.88	
NNPDF31 & DSS $(N^{3}LO)$	1.31	

SIDIS+DY fit [SV19]

Obviously, one must include PDF uncertainty into the fit

Including PDF uncertainty "straightforwardly"

▶ PDF uncertainty is **larger** than the experimental precision

- ▶ LHC 5-7% vs. 1%
- ▶ Low energy DY 10-50% vs. 10%
- SIDIS 10-50% vs.

 \blacktriangleright TMD physics (in comparison to DIS) is sensitive to different x-domain

▶ Strongly depends on the set

 $\begin{array}{l} \leftarrow \text{SV19 fit} \\ \text{NNPDF+DSS} \\ \text{SIDIS+DY} \\ N_{pt} = 1039 \\ \text{fit made for central replica} \\ \leftarrow \text{ distribution of } \chi^2 \text{ for} \\ 1000 \text{ replicas of NNPDF} \end{array}$

PDF essentially changes behavior of TMD = PDF-bias

SV19 fit, 40 random replicas of NNPDF3.1

In fact, each PDF replica must be equipped by its own f_{NP} It will partially compensate PDF-bias So, together they form a TMD distribution

Inclusion of PDF uncertainty into TMD fit (work in progress)

Computationally intensive work

- ▶ Represent PDF uncertainty as MC replicas (1000 replicas)
- ▶ Make a fit of TMD distribution, based on each replica

One could expect that result would be less dependent on PDF

Inclusion of PDF uncertainty into TMD fit (work in progress)

Computationally intensive work

- ▶ Represent PDF uncertainty as MC replicas (1000 replicas)
- ▶ Make a fit of TMD distribution, based on each replica

One could expect that result would be less dependent on PDF

NO

We have observed that "simple" (5 params!) model from SV19 does not fit all PDF sets equally well **Reason:** absence of flavor dependence **Solution:** add flavor dependence $f_{NP} \rightarrow f_{NP}^{u,d,\bar{u},\bar{d},rest}$

Now, TMDs based on different PDFs are in agreement

Meanwhile the NP parameters of model strongly distributed λ_1 λ_2 λ_3 λ_4

TR

UR

Conclusion for part 2

▶ Matching of TMD to PDF is important!

- ▶ TMD totally dependent on the PDF in use
 - There is no agreement between PDF sets
 - \blacktriangleright Uncertainty in PDF lead to crazy TMDs \rightarrow fit each PDF replica
- ▶ To compensate PDF-bias one needs flavor dependence
 - Results for different PDFs are in agreement
 - ▶ TMDs are in agreement
 - Uncertainty on TMD is much larger

▶ Work in progress

▶ Future: one needs joint fit of PDF + TMD

Part III Decorrelation of TMD evolution

TMD evolution depends on non-perturbative CS-kernel

$$\mathcal{D} = -\frac{1}{2}K = \frac{1}{2}F_{q\bar{q}} = -\frac{1}{2}\gamma_{\nu}^{f_{\perp}}$$

$$\mu^2 \frac{d}{d\mu^2} F_{f \leftarrow h}(x, b; \mu, \zeta) = \frac{\gamma_F^f(\mu, \zeta)}{2} F_{f \leftarrow h}(x, b; \mu, \zeta)$$

$$\zeta \frac{d}{d\zeta} F_{f \leftarrow h}(x, b; \mu, \zeta) = -\mathcal{D}^f(b, \mu) F_{f \leftarrow h}(x, b; \mu, \zeta)$$

CS is fundamental QCD function

$$\mathcal{D}(b,\mu) = \lambda_{-} \frac{ig}{2} \frac{\mathrm{Tr} \int_{0}^{1} d\beta \langle 0|F_{b+}(-\lambda_{-}n+b\beta)W_{C'}|0\rangle}{\mathrm{Tr} \langle 0|W_{C'}|0\rangle} + Z_{\mathcal{D}}(\mu)$$

- ▶ Independent observable
- ▶ Measures QCD-vacuum

Thus, TMD distributions are functionals of CS-kernel $f_1[\mathcal{D}](x,b;\mu,\zeta)$

- \blacktriangleright Is it a problem? YES, because we extract simultaneously \mathcal{D} and TMDs
 - Extraction is not universal!
 - ▶ E.g. one cannot use D from lattice, together with TMDs from pheno.
 - ▶ In principle, very large/broad pull of data will reduce correlation
 - Problem of comparison/interpretation of result
- ▶ One makes situation worse by splitting to perturbative and NP parts
 - ▶ Keep CS-kernel a whole function

There are <u>several solutions</u> for this problem my-preferred is ζ -prescription

- In a nutshell: define TMD at ζ(b, μ)
 ζ(b, μ) = equi-evolution line (NP!)
- ▶ Equivalent to fixed-point definition
 - TMDs on the same equi-evolution line are the same (by definition!)
- Generally: does not matter which line use as reference
- But there is one very special line = which passes though the saddle point
 - TMD on this line = optimal TMD

Why optimal TMD is optimal?

1 At saddle point $\mathcal{D} = 0$

$$(\text{optimal})f_1(x,b) = f_1[\mathcal{D}=0](x,b;(\mu,\zeta)_{\text{saddle}})$$

Optimal equi-potential line is continuous (important for small-b matching)Greatly simplifies all equations

Everything is nonperturbative! Position of saddle-point, ζ -line,.... Solve all equations in terms of \mathcal{D} !

▶ At large-b saddle-point goes below Λ_{QCD} .

Not possible to build perturbative-like solution

▶ But there is an exact solution! (see [Scimemi,AV,1912.06532,app.C])

$$2\mathcal{D} + 2\beta(a_s)\frac{\partial g(a_s,\mathcal{D})}{\partial a_s} - \Gamma_{\text{cusp}}(a_s)\frac{\partial g(a_s,\mathcal{D})}{\partial \mathcal{D}} + \gamma_V(a_s) = 0.$$
, $g(a_s,0) = 0$

CS-kernel still correlated with the TMDs

Conclusion for part 3

- ▶ Independent extraction of evolution and TMDs is cumbersome task
- ▶ Keep CS-kernel as a whole function!
- ▶ Fixed-scale schemes are preferable
 - \triangleright ζ -prescription

Conclusion

- ▶ Extraction of TMDs is a very peculiar task
 - Involves several NP functions
 - Requires strict data-cuts
 - Perturbative input is important
 - Many open theoretical questions
- ▶ JLab
 - ▶ There will be not much **pure** TMD-factorizable data
 - ▶ Large-x
 - Paradise to study power corrections
 - ▶ Higher-twist TMDs
 - Mass/kinematic corrections
 - Interesting and weakly studied field
 - current/next frontier of QCD
 - Going to be the challenge for theoreticians
- ► EIC
 - ▶ Will happen in 10+ years (I doubt that our understanding will remain the same)

Always take into account uncertainties!

