EXTRACTION OF TMD DISTRIBUTIONS FROM DATA

Alessandro Bacchetta

European Research Council

RESULTS OBTAINED WITH CONTRIBUTIONS FROM

Valerio Bertone

Fulvio Piacenza

Chiara Bissolotti

Cristian Pisano

Giuseppe Bozzi

Marco Radici

Andrea Signori

Matteo Cerutti

SOME IMPORTANT POINTS

- Perturbative accuracy
- Choice of data points
- Consistency polarized/unpolarized
- Positivity bounds

UNPOLARISED QUARK TMDS

TMDS IN DRELL-YAN PROCESSES

The W term, dominates at low transverse momentum ($q_T \ll Q$) So far, the Y term has been excluded in the Pavia analyses

TMDS IN DRELL-YAN PROCESSES

TMDS IN SEMI-INCLUSIVE DIS

TMD STRUCTURE

$$\begin{split} \hat{f}_{1}^{q}(x,b_{T};\mu^{2}) &= \int d^{2}\boldsymbol{k}_{\perp}e^{i\boldsymbol{b}_{T}\cdot\boldsymbol{k}_{\perp}}f_{1}^{q}(x,\boldsymbol{k}_{\perp}^{2};\mu^{2}) \\ & \text{perturbative Sudakov} \\ \text{form factor} \\ \hat{f}_{1}^{q}(x,b_{T};\mu^{2}) &= \sum_{i} (C_{qi}\otimes f_{1}^{i})(x,b_{*};\mu_{b})e^{\tilde{S}(b_{*};\mu_{b},\mu)}e^{g_{K}(b_{T})\ln\frac{\mu}{\mu_{0}}}\hat{f}_{\mathrm{NP}}^{q}(x,b_{T}) \\ \mu_{b} &= \frac{2e^{-\gamma_{E}}}{b_{*}} \\ & \text{collinear PDF} \\ & \text{matching coefficients} \\ & \text{(perturbative)} \\ \end{split}$$

see, e.g., Collins, "Foundations of Perturbative QCD" (11)

PERTURBATIVE ORDER OF EACH INGREDIENT

Order in powers of a_s

LOGARITHMIC ACCURACY

Sudakov form factor

matching coeff.

$$LL \qquad \alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right) \qquad \qquad C^0$$

NLL
$$\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right)$$
 C^0
NLL' $\alpha_S^n \ln^{2n} \left(\frac{Q^2}{\mu_b^2} \right), \quad \alpha_S^n \ln^{2n-1} \left(\frac{Q^2}{\mu_b^2} \right)$ $\left(C^0 + \alpha_S C^1 \right)$

the difference between the two is NNLL

$$\alpha_S^n \ln^{2n-2} \left(\frac{Q^2}{\mu_b^2} \right)$$

PERTURBATIVE ORDER OF EACH INGREDIENT

Order in powers of α_s

hard factor and				ingredients in perturbative			
matching coefficients				Sudakov form factor			
	:	↓ .		↓ .			
	Accuracy	H and C	K and γ_F	γκ	PDF and a_s evol.		
_	LL	0	-	1	-		
	NLL	0	1	2	LO		
	NLL'	1	1	2	NLO		
	NNLL	1	2	3	NLO		
	NNLL'	2	2	3	NNLO		
	N ³ LL	2	3	4	NNLO		
	N ³ LL′	3	3	4	N ³ LO		

order α^3 matching coeff. only available since last year Lou, Yang, Zhu, Zhu, arXiv:2012.03256

COMPARISON OF DIFFERENT ORDERS

V. Bertone's talk at LHC EW WG General Meeting, Dec 2019 https://indico.cern.ch/event/849342/

RECENT TMD FITS OF UNPOLARIZED DATA

	Framework	HERMES	COMPASS	DY	Z production	N of points	χ²/N _{points}
Pavia 2017 arXiv:1703.10157	NLL	>	>	~	~	8059	1.55
SV 2017 arXiv:1706.01473	NNLL'	*	*	>	~	309	1.23
BSV 2019 arXiv:1902.08474	NNLL'	*	×	~	~	457	1.17
SV 2019 arXiv:1912.06532	NNLL'	~	~	~	~	1039	1.06
Pavia 2019 arXiv:1912.07550	N ³ LL	×	×	~	~	353	1.02

.

x-Q² COVERAGE PV17

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

DATA SELECTION IN PAVIA 2017

 $Q^2 > 1.4 \text{ GeV}^2$ 0.2 < z < 0.7 $P_{hT}, q_T < \text{Min}[0.2 \ Q, 0.7 \ Qz] + 0.5 \text{ GeV}$

Total number of data points: 8059 Total $\chi^2/dof = 1.55$

The TMD "eight-thousander" fit

Nanga Parbat, Kashmir, 8126 m

 $Q^2 > 1.4 \text{ GeV}^2$ 0.2 < z < 0.7 $P_{hT}, q_T < \text{Min}[0.2 \ Q, 0.7 \ Qz] + 0.5 \text{ GeV}$

Total number of data points: 8059 Total $\chi^2/dof = 1.55$

We checked also

 $P_{hT} < Min[0.2Q, 0.5Qz] + 0.3 \,\text{GeV}$ $P_{hT} < 0.2Qz$

Total number of data points: 3380 Total number of data points: 477 Total χ^2 /dof = 0.96 Total χ^2 /dof = 1.02

PV17 – RESULTING TMDS

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

expression in b_T space

$$\hat{f}_{\rm NP}(x, b_T) = e^{-g_1(x)\frac{b_T^2}{4}} \left(1 - \frac{\lambda g_1^2(x)}{1 + \lambda g_1(x)}\frac{b_T^2}{4}\right)$$

- Guassian + weighted Gaussian
- nontrivial x dependence
- no flavor dependence

$$g_K(b_T) = -\frac{g_2}{2}b_T^2$$
 Gaussian

plot in k_{\perp} space

x-Q² COVERAGE PV17

Bacchetta, Delcarro, Pisano, Radici, Signori, arXiv:1703.10157

x-Q² COVERAGE PV19

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

THE PAVIA19 EXTRACTION

Bacchetta, Bertone, Bissolotti, Bozzi, Delcarro, Piacenza, Radici, arXiv:1912.07550

PV19 - DATA COMPARISION

The TMD "Sugarloaf" fit

Pão de Açucar (Sugarloaf Mountain), Brasil, 396 m

PV19 - RESULTING TMDS

expression in b_T space

plot in k_{\perp} space

$$f_{\rm NP}(x, b_T, \zeta) = \left[\frac{1-\lambda}{1+g_1(x)\frac{b_T^2}{4}} + \lambda \exp\left(-g_{1B}(x)\frac{b_T^2}{4}\right)\right]$$

$$\times \exp\left[-\left(g_2 + g_{2B}b_T^2\right)\ln\left(\frac{\zeta}{Q_0^2}\right)\frac{b_T^2}{4}\right],$$

$$\bullet q-{\rm Guassian} + {\rm Gaussian}$$

$$\bullet {\rm nontrivial } x {\rm dependence}$$

$$\bullet {\rm no flavor dependence}$$

• non-Gaussian nonperturbative TMD evolution

9 free parameters

X DEPENDENCE IN TMDS

PV17
$$g_1(x) = N_1 \frac{(1-x)^{\alpha} x^{\sigma}}{(1-\hat{x})^{\alpha} \hat{x}^{\sigma}}$$

PV19

$$g_1(x) = \frac{N_1}{x\sigma} \exp\left[-\frac{1}{2\sigma^2}\ln^2\left(\frac{x}{\alpha}\right)\right] ,$$

$$g_{1B}(x) = \frac{N_{1B}}{x\sigma_B} \exp\left[-\frac{1}{2\sigma_B^2}\ln^2\left(\frac{x}{\alpha_B}\right)\right] .$$

NANGA PARBAT: A PUBLIC PLATFORM FOR TMD STUDIES

https://github.com/MapCollaboration/NangaParbat

Nanga Parbat: a TMD fitting framework

Nanga Parbat is a fitting framework aimed at the determination of the non-perturbative component of TMD distributions.

Download

You can obtain NangaParbat directly from the github repository:

https://github.com/vbertone/NangaParbat/releases

For the last development branch you can clone the master code:

git clone git@github.com:vbertone/NangaParbat.git

Analysis of revised SIDIS data PROBLEMS WITH SIDIS NORMACINARASS [Phys.Rev. D97 (2018) no.3, 032006]

Comparing the PV17 extraction with the new COMPASS data, without normalization factors, at NLL the agreement is very good

NLL H = 1

NLL'
$$H = 1 + \frac{C_F}{\pi} \left(-4 + \frac{\pi^2}{12} \right) \alpha_S \approx 1 - 0.$$

Going to NLL' or NNLL the situation worsens!

PROBLEMS WITH HIGH TRANSVERSE MOMENTUM

Gonzalez-Hernandez, Rogers, Sato, Wang arXiv:1808.04396

My personal opinion is that we should be less strict

TMD REGIONS AND DECAYS

Harut's observation

TMD REGIONS AND DATA

It seems that the same "physics" is dominating at least for $0 \le P_{hT} \le 0.7$ GeV, which means $0 \le q_T \le 2.8$ GeV in the lowest-z bin

TMD REGIONS: PERTURBATIVE VS. NONPERTURBATIVE

Perturbative approach: TMD region = where the log divergence of the fixed-order calculation dominates (resummation is required) Nonperturbative approach: TMD region = where either the log divergence OR the nonperturbative contributions dominate

TMD region (ideal situation)

TMD REGIONS: PERTURBATIVE VS. NONPERTURBATIVE

Perturbative approach: TMD region = where the log divergence of the fixed-order calculation dominates (resummation is required) Nonperturbative approach: TMD region = where either the log divergence OR the nonperturbative contributions dominate

- ► Simple Gaussians are not sufficient
- Nontrivial x-dependence is required
- ► At least NLL should be used
- A study with unpolarized TMDs without the above characteristics is an exploration or toy model, not an extraction
- No flavor dependence is needed for the moment (note however that some flavor dependence is already generated by the collinear PDFs)
- The identification of the region of applicability of the TMD formalism is still an open issue

SIVERS QUARK TMDS

1st **Important Point: Choice of Data**

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

1ST IMPORTANT POINT: CHOICE OF DATA

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

COMPASS (2017)

Since the x, z, and P_{hT} projections come from the same dataset and are strongly correlated, we consider only the x projection

Considering all three projections independently, leads to an artificial underestimate of the uncertainties

2ND IMPORTANT POINT: CONSISTENCY WITH UNPOLARIZED TMDS

$$A_{UT}^{\sin(\phi_h - \phi_S)}(x, z, \boldsymbol{P}_{hT}^2, Q^2) \approx \frac{F_{UT,T}^{\sin(\phi_h - \phi_S)}}{F_{UU,T}}$$

NLL analysis

$$\hat{f}_{1T}^{\perp(1)a}(x, b_T^2; Q^2) = e^{S(\mu_b^2, Q^2)} e^{g_K(b_T)\ln(Q^2/Q_0^2)} f_{1T}^{\perp(1)a}(x; \mu_b^2) \hat{f}_{1TNP}^{\perp(1)a}(x, b_T^2)$$

$$\uparrow$$
this ingredient is the same and must
be fixed by unpolarized TMD studies
$$\downarrow$$

$$\hat{f}_1^a(x, b_T^2; Q^2) = e^{S(\mu_b^2, Q^2)} e^{g_K(b_T)\ln(Q^2/Q_0^2)} f_1^a(x; \mu_b^2) \hat{f}_{1NP}^a(x, b_T^2)$$

37

NLL analysis

$$\hat{f}_{1T}^{\perp(1)a}(x, b_T^2; Q^2) = e^{S(\mu_b^2, Q^2)} e^{g_K(b_T)\ln(Q^2/Q_0^2)} f_{1T}^{\perp(1)a}(x; \mu_b^2) \hat{f}_{1TNP}^{\perp(1)a}(x, b_T^2)$$

$$\uparrow$$
The evolution of $f_{1T}^{\perp(1)}(x)$ is nontrivial and no exact solutions are available.

We applied the same evolution as f_1 . This is an approximation that does not affect much the results if the range of Q is small.

3RD IMPORTANT POINT: CHOICE OF FUNCTIONAL FORM

$$f_{1TNP}^{\perp}(x,k_T^2) = \frac{(1+\lambda_S k_T^2) e^{-k_T^2/M_1^2}}{K\pi (M_1^2 + \lambda_S M_1^4)} f_{1NP}(x,k_T^2)$$

$$f_{1T}^{\perp(1)a}(x;Q_0^2) = \frac{N_{\text{Siv}}^a}{G_{\text{max}}^a} x^{\alpha_a}(1-x)^{\beta_a} \left[1 + A_a T_1(x) + B_a T_2(x)\right] f_1^a(x;Q_0^2)$$
5 parameters for up, down, sea +2
= 17 free parameters

Why did we choose such a form?

DETOUR: POSITIVITY BOUNDS

$$\frac{k_T}{M} \left| f_{1T}^{\perp}(x, k_T^2) \right| \leq f_1(x, k_T^2)$$

for any value of x and k_{T}

Analogous to

$$f_1(x) \ge 0$$
 $|g_1(x)| \le f_1(x)$ $|h_1(x)| \le \frac{1}{2} (f_1(x) + g_1(x))$

These bounds are essential

- to interpret the PDFs as probability densities
- to guarantee that cross sections are never negative

THE SIMPLEST EXAMPLE

Proton-antiproton Drell-Yan at fixed rapidity

$$y = 0 \quad \Rightarrow \quad x_A = x_B = \frac{Q}{\sqrt{s}}$$

$$d\sigma \propto \sum_{q} e_q^2 \left[\left(f_1^q(x) \right)^2 - \left(g_1^q(x) \right)^2 \right]$$

If I have a region where

$$|g_1^{u+\bar{u}}| > f_1^{u+\bar{u}}$$
 and $|g_1^{d+\bar{d}}| > f_1^{d+\bar{d}}$

the cross section will become negative

Be like a cross section

Slightly updated results w.r.t. arXiv (due to the inclusion of correlated errors)

Total number of data points: 118 Total $\chi^2/dof = 1.08$

	M_1	λ_S	$lpha_d$	α_u	α_s	
All replicas	0.81 ± 0.35	-0.50 ± 0.73	1.13 ± 0.98	0.16 ± 0.16	1.61 ± 1.52	
Replica 105	0.78	-0.42	0.42	0.12	0.32	
	β_d	β_u	β_s	A_d	A_u	A_s
All replicas	5.64 ± 4.32	1.47 ± 1.41	4.64 ± 4.55	0.79 ± 8.63	-0.98 ± 3.10	-0.68 ± 6.83
Replica 105	9.70	0.86	0.20	-0.88	-0.08	-1.52
	B_d	B_u	B_s	$N_{\rm Siv}^d$	$N_{ m Siv}^u$	$N_{ m Siv}^s$
All replicas	2.05 ± 5.01	2.35 ± 4.57	0.29 ± 3.32	$-4.89 \times 10^{-6} \pm 1.00$	-0.07 ± 0.50	0.02 ± 0.64
Replica 105	0.98	1.49	0.89	-1.00	0.29	0.44

Grids available, please ask

SIVERS FUNCTION

Q= 2GeV

3D STRUCTURE IN MOMENTUM SPACE

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278

SIVERS FUNCTION: COMPARISON WITH ECHEVARRIA, KANG, TERRY

Without RHIC W & Z data

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278 Echevarria, Kang, Terry, arXiv:2009.10710

COMPARISON WITH DRELL-YAN DATA

F. Delcarro's talk at POETIC 2019

Roughly speaking, the contribution to χ^2 of these data is about 14 for 7 data points.

This would change the total χ^2 /dof to something like 1.15.

PROBLEMS WITH DY DATA?

SIVERS FUNCTION

Without RHIC W & Z data

With RHIC W & Z data

Bacchetta, Delcarro, Pisano, Radici, arXiv:2004.14278 Echevarria, Kang, Terry, arXiv:2009.10710

CONCLUSIONS

- We performed a state-of-the-art extraction of the Sivers function from SIDIS data
- Our extraction of the Sivers function is not well compatible with STAR Drell-Yan data. We are including the data in an updated fit, but we don't think they'll have a significant effect.
- ► If data require a large violation of positivity bounds, it means that there is something wrong with the theoretical analysis

BACKUP SLIDES

LOW-b_T MODIFICATIONS

 $\log(Q^2 b_T^2) \rightarrow \log(Q^2 b_T^2 + 1)$ see, e.g., Bozzi, Catani, De Florian, Grazzini hep-ph/0302104

$$b_*(b_c(b_{\rm T})) = \sqrt{\frac{b_{\rm T}^2 + b_0^2/(C_5^2Q^2)}{1 + b_{\rm T}^2/b_{\rm max}^2 + b_0^2/(C_5^2Q^2b_{\rm max}^2)}} \qquad b_{\rm min} \equiv b_*(b_c(0)) = \frac{b_0}{C_5Q}\sqrt{\frac{1}{1 + b_0^2/(C_5^2Q^2b_{\rm max}^2)}}$$

Collins et al.
arXiv:1605.00671

- The justification is to recover the integrated result ("unitarity constraint")
- \bullet Modification at low b_{T} is allowed because resummed calculation is anyway unreliable there

$$\hat{f}_1^q(x, b_T; \mu^2) = \sum_i \left(C_{qi} \otimes f_1^i \right)(x, b_*; \mu_b) e^{\tilde{S}(b_*; \mu_b, \mu)} e^{g_K(b_T) \ln \frac{\mu}{\mu_0}} \hat{f}_{\rm NP}^q(x, b_T)$$

$$\mu_0 = 1 \,\mathrm{GeV}$$

$$b_* \equiv \frac{b_T}{\sqrt{1 + b_T^2 / b_{\max}^2}}$$

Collins, Soper, Sterman, NPB250 (85)

$$\mu_{b} = 2e^{-\gamma_{E}}/b_{*} \qquad \bar{b}_{*} \equiv b_{\max} \left(\frac{1 - e^{-b_{T}^{4}/b_{\max}^{4}}}{1 - e^{-b_{T}^{4}/b_{\min}^{4}}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_{E}}$$
$$b_{\min} = \frac{2e^{-\gamma_{E}}}{Q}$$

These are all choices that should be at some point checked/challenged

EFFECTS OF b $_{\ast}$ **PRESCRIPTION**

$$\mu_b = 2e^{-\gamma_E}/b_* \qquad \bar{b}_* \equiv b_{\max} \left(\frac{1 - e^{-b_T^4/b_{\max}^4}}{1 - e^{-b_T^4/b_{\min}^4}}\right)^{1/4} \qquad b_{\max} = 2e^{-\gamma_E}$$

No significant effect at high Q, but large effect at low Q (inhibits perturbative contribution)