

Matthew Kelsey* Wayne State University

EIC UG Meeting Early Career Workshop July 29-30, 2021

*mkelsey@wayne.edu

In collaboration with Reynier Cruz-Torres, Xin Dong, Yuanjing Ji, Sooraj Radhakrishnan, Ernst Sichtermann; arXiv:2107.05632

Constraints on Gluon Distribution Functions in the Nucleon and Nucleus from Open Charm Hadron Production

Outline

1) Introduction

2) Simulation setup and baseline charm projections

3) Effects of intrinsic charm on projected data

4) Constraints to nuclear gluon PDFs from e+Au

EIC UG Meeting Early Career Workshop - July 29-30, 2021

Introduction

Charm quarks are produced via photon-gluon fusion at leading-order in deep inelastic scatterings (DIS)

- Direct and clean access to gluonic structure in the nucleon/nuclei

Future EIC experiments will probe both low and high partonic longitudinal momentum fraction x

- Nuclear gluon PDFs, Intrinsic charm PDFs, Gluon TMDs, ...

- EIC UG Meeting Early Career Workshop July 29-30, 2021

Simulation for Charm Studies

Events generated with PYTHIA 6 fast simulations

Geant4-based simulation for primary vertex resolution study

M. Kelsey

Charm Reconstruction

- D⁰ c $\tau \sim 120 \ \mu\text{m}; \ \mathscr{B}(D^0 \to K^- \pi^+) = 3.954\%$

- Performance driven by pointing+PV resolution

Projected cross sections calculated with $D^0 \to K^- \pi^+$ (+C.C) exclusive hadronic channel

Improved S/B by identification of charm hadron decay vertex; Topological selection

Charm Production Projections for the EIC

Broad and precise coverage at nominal $\mathscr{L} = 10$ fb⁻¹/energy

EIC UG Meeting Early Career Workshop - July 29-30, 2021

Effects of Intrinsic Charm PDFs

Existence of intrinsic charm (IC) quarks still an open question

- Non-perturbative $|uudc\bar{c}\rangle$ Fock state of the proton wave function

to charm quark mass

M. Kelsey

EIC UG Meeting Early Career Workshop - July 29-30, 2021

Several models on the market; Most analyses find a IC at high parton-x region due

NNPDF collaboration Eur. Phys. J.C 76 (2016) 11, 647 **Fitted Charm Method**

Effects of Intrinsic Charm PDFs

Significant difference between projected data using CT14 PDFs with and without IC* Precise EIC data will distinguish models

*NNPDF3 IC PDF produces qualitatively similar projections as BHPS1 EIC UG Meeting Early Career Workshop - July 29-30, 2021 M. Kelsey

Nuclear Gluon PDFs

Nuclear modification in PYTHIA analysis via nuclear PDFs for Au nuclei*

*EPPS16 (Eur. Phys. J. C 77, 163 (2017)), nCTEQ15 (PRD 93, 085037), and nNNPDF2.0 (JHEP 2020, 183 (2020))nPDFs

M. Kelsey

EIC UG Meeting Early Career Workshop - July 29-30, 2021

Pseudo-data ($F_2^{c\overline{c}}$ ratios) generated by displacing projections randomly by statistical errors

Bayesian PDF Re-weighting

Impact on gluon nPDF studied with a Bayesian PDF re-weighting procedure* - Bayes theorem: $\mathcal{P}_{\text{new}}(f) \propto \mathcal{P}(\vec{y}|f) \mathcal{P}_{\text{old}}(f)$

Generate a large sample of nPDF replicas**

$$f_k = f_0 + \sum_i$$

Calculate weights w_k of each replica according to χ^2 with respect to pseudo-data \rightarrow Re-weight eigen PDFs

$$w_{k} = \frac{exp[-\chi_{k}^{2}/2]}{\frac{1}{N_{rep}}\sum_{k}exp[-\chi_{k}^{2}/2]} \quad f_{new} = f_{0} + \sum_{i} \left(\frac{f_{i,+} + f_{i,-}}{2}\right) \left[\frac{1}{N_{rep}}\sum_{k}w_{k}r_{k,-}\right]$$

*H. Paukkunen and P. Zurita JHEP 2014, 100 (2014) **This is done for the Hessian PDFs; For NNPDF we use provided MC replicas and "chi2" weights EIC UG Meeting Early Career Workshop - July 29-30, 2021

$$\left(\frac{f_{i,+}+f_{i,-}}{2}\right)r_{k,i}$$

Impact on Gluon nPDF

Significant reduction to input gluon nPDF uncertainties

- Particularly at high-x (>0.1) where inclusive measurements provide less constraint
- Qualitatively similar across various input nPDFs used

Qualitatively similar impact as in previous EIC studies*, but with full detector effects implemented

*E.C. Aschenauer et al. Phys. Rev. D 96, 114005

EIC UG Meeting Early Career Workshop - July 29-30, 2021

Conclusions

Precise measurements of charm hadrons via exclusive decay channels will be possible with an all-Si vertex detector at future EIC experiments

span a broad kinematic reach in Q^2 and x \rightarrow Will provide significant constraint to the gluon nPDFs

- The projected charm structure functions F_2^{cc} in e+p/Au collisions will
- \rightarrow Data will be extremely sensitive to IC and can distinguish various models

BACKUP SLIDES FOLLOW

GEANT4-Based Simulations

Fast Simulation Parameters

η	σ_p/p - 3.0 T (%)	(%)
(-3.0, -2.5)	$0.1{\cdot}p \oplus 2.0$	
(-2.5, -2.0)	$0.02 \cdot p \oplus 1.0$	
(-2.0, -1.0)	$0.02 \cdot p \oplus 1.0$	
(-1.0, 1.0)	$0.02 \cdot p \oplus 0.5$	
(1.0, 2.0)	$0.02 \cdot p \oplus 1.0$	
(2.0, 2.5)	$0.02 \cdot p \oplus 1.0$	
(2.5, 3.0)	$0.1{\cdot}p \oplus 2.0$	

M. Kelsey

$p_{\rm max}^{\rm PID}~({\rm GeV}/c)$ $\sigma(DCA_{r\phi}) \ (\mu m)$ $60/p_T \oplus 15$ 10 $60/p_T \oplus 15$ 10 $40/p_T \oplus 10$ 10 $30/p_T \oplus 5$ 6 $40/p_T \oplus 10$ 50 $60/p_T \oplus 15$ 50 $60/p_T \oplus 15$ 50

EIC UG Meeting Early Career Workshop - July 29-30, 2021

$D^0 \rightarrow K\pi$ Topological Variables

EIC UG Meeting Early Career Workshop - July 29-30, 2021

Fast Simulation Validation

EIC UG Meeting Early Career Workshop - July 29-30, 2021

Impact on Gluon nPDF

M. Kelsey

EIC UG Meeting Early Career Workshop - July 29-30, 2021

EPPS16 Replica Distributions

Impact on Gluon nPDF

EIC UG Meeting Early Career Workshop - July 29-30, 2021

M. Kelsey

