

Neutron spin structure from e-³He with Double spectator tagging at EIC

Dien Nguyen EIC UG Meeting Early Career Workshop

07/29/2021

1

In collaboration with I. Ivica, J. R. Pybus, A. Jentsch, E. P. Segarra, M. D. Baker, O. Hen, D. Higinbotham, R. Milner, Z. Tu, A. Tadepalli, J. Rittenhouse West

Nucleon Spin Puzzle

Gluon spin

Quark and Gluon internal motion

Spin structure function obtained from asymmetry measurement

$$A_1(x,Q^2) = \frac{\sigma^{\uparrow\downarrow} - \sigma^{\uparrow\uparrow}}{\sigma^{\uparrow\downarrow} + \sigma^{\uparrow\uparrow}} \approx \frac{g_1(x,Q^2)}{F_1(x,Q^2)}$$

- Neutron asymmetry necessary for the flavor study
- □No free neutron target

Parno et al., Phy Let B DOI: 10.1016/j.physletb.2015.03.067 X. Zheng et al., PRL 92, 012004 (2004); PRC 70, 065207 (2004)

³He as polarized neutron target

- Neutron carries most of the spin in polarized ³He
- $\Box A_1^n$ is extracted from inclusive DIS e-He3, A_1^{He}

Neutron pol: Pn ~ 87% Proton pol: Pp ~ 2.7%

$$A_1^n \approx \frac{1}{P_n} \frac{F_2^{^{3}\text{He}}}{F_2^n} (A_1^{^{3}\text{He}} - 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_1^p)$$

 A_1^n is extracted from inclusive DIS e-He3

$$A_1^n \approx \frac{1}{P_n} \frac{F_2^{^{3}\text{He}}}{F_2^n} (A_1^{^{3}\text{He}} - 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_1^p)$$

Effective neutron, proton polarization

Structure functions F2

□ A1p uncertainty.

Large model dependence

Inclusive extraction has large systematic uncertainties

X_{Bjorken}

Double spectator tagging suppress model dependence

Select the active nucleon in the reaction and break up channel Suppress the contribution of non-nucleonic degree of freedom "Effective" free neutron target 7

Spectator protons @ EIC Far forward region

□ Magnetic field separates proton from Ion beam

□ Proton: B0 tracker, Off-Momentum detector and Roman pots

Yellow report section: 11.6 arXiv: 2103.05419v2

Event generator and processing

Existing code assumes standing nucleons.

Add ³He light-front wave function effects (fermi motion)

Produce pseudo-data and run via EIC Simulation

arXiv: 2103.05419v2 arXiv: 2106.08805

Spectator momentum at the lon Rest Frame eN: 5x41

Spectator protons = DIS off neutron

Iow total spectator momentum = Effective "free

neutron" target

Minimal nuclear effects

Event selection

DIS Selection:

- $Q^2 > 2 (GeV/c)^2$
- $W^2 > 4 (GeV/c)^2$
- 0.05 < y < 0.95

+Tagging :

- Both spectator protons detected.
- |p1 + p2| < 0.1 GeV

Bin in x & Q²
scale to 1 EIC year (10 fm⁻¹)

Uncertainty =
$$\frac{1}{\sqrt{N} P_e P_N}$$

 $\Box A_1^{^{3}\text{He}}$: Only includes the statistic uncertainty

 A_1^n from 3He(e, e')

Extraction introduce a large systematic uncertainty

$$A_1^n \approx \frac{1}{P_n} \frac{F_2^{^{3}\text{He}}}{F_2^n} (A_1^{^{3}\text{He}} - 2P_p \frac{F_2^p}{F_2^{^{3}\text{He}}} A_1^p)$$

Double Tagging Reduce A₁ⁿ Uncertianty

14

+ Valence-region Overlap \w JLab12 @ higher-Q²

15

A_1^n : Also cover low-x

Double tagging @ EIC cover 0.003 < x < 0.651

□ Significantly reduced model dependent uncertainty compare \w (e,e'): x10 @ x < 0.1 ; x4 @ x > 0.1

Neutron Spin Structure from e-³He Scattering with Double Spectator Tagging at the Electron-Ion Collider

I. Friščić^{a,b,1}, D. Nguyen^{a,b,1}, J.R. Pybus^{a,b}, A. Jentsch^c, E.P. Segarra^a, M.D. Baker^d, O. Hen^a, D.W. Higinbotham^b, R. Milner^a, A.S. Tadepalli^b, Z. Tu^c, J. Rittenhouse West^{b,e}

Conclusions

□ EIC capable of double spectator tagging

□ Minimize the model dependence for neutron spin structure

 \Box Large coverage range of 0.003 < x < 0.651

□ High-x reach limited by resolution

Open many other potential physics measurement at EIC

Many thanks to:

JLab EIC Center & N. Isgur Fellowship

EIC YR Diffraction & Tagging working group

Xiaochao Zheng, Harut Avakian, Barak Schmookler for valuable discussions and suggestions

Back up slides

Inclusive extraction has large systematic uncertainties

PRL 113, 232505 (2014)

Large smearing @ high-x

$A_1^{^{3}\text{He}}$ prediction

$$A_1^{^{3}\text{He}} = P_n \frac{F_2^n}{F_2^{^{^{3}}\text{He}}} A_1^n + 2P_p \frac{F_2^p}{F_2^{^{^{3}}\text{He}}} A_1^p$$

 $\Box A_1^n, A_1^p : E99117 \text{ fit}$ $\Box F_2^p, F_2^D : E155 \text{ fit}$ $\Box F_2^n = F_2^D - F_2^p ; F_2^{3\text{He}} = F_2^D + F_2^p$ $\Box P_n = 0.86 \pm 0.02 ; P_p = -0.028 \pm 0.004$

Purity of reconstruction only uses the electron momentum information

Electron Method (using track momentum) Purity

25

Angle distribution: θ_{rq} : FSI

Talks: Weiss, Wim, Kuhn

Event generator and processing

Generator:

- CLASDIS for inclusive and SIDIS based on PEPSI
- Unpolarized and polarized PDFs
- Generate event at fixed target frame
- No nuclear effect
 - Boosted to collide frame

Fermi-correction:

- Using the light-cone spectral function
- Adding the motion of active nucleon
- Determine kinematic of spectators
- ➢ 2BBU, 3BBU, SRCs

EIC simulation: EIC smear and EIC root

Acceptance and resolution

Many Many thanks to: A. Harut, I. Ivica, J. R. Pybus, E. P. Segarra, A. Jentsch, M. Baker, Or Hen, D. Higinbotham, Zhoudunming Tu, A.S. Tadepalli. **27**

Section: 7.3.8

