The Scintillating Fiber Tracking Detector, a qualitative approach

Carlos Ayerbe Gayoso
Mississippi State University

2021 EIC UG Meeting Early Career Workshop. 29 July 2021
Motivation

- In the YR meson WG, a particular channel was discussed:

For $\Lambda \rightarrow p + \pi^-$ protons could be detected efficiently, but we need trackers in opposite direction (charge) => on the path to ZDC

Yulia Furletova, May 11th 2020
Motivation

- In the YR meson WG, a particular channel was discussed:

 For $\Lambda \rightarrow p + \pi^-$ protons could be detected efficiently, but we need trackers in opposite direction (charge) \Rightarrow on the path to ZDC

- In general the tendency nowadays is the use of GEMs or silicon trackers \rightarrow e.g. next talk by Manoj Jadhav – Argonne.
Motivation

- In the YR meson WG, a particular channel was discussed: For $\Lambda \to p + \pi^-$ protons could be detected efficiently, but we need trackers in opposite direction (charge) => on the path to ZDC.

- In general the tendency nowadays is the use of GEMs or silicon trackers → e.g. next talk by Manoj Jadhav – Argonne.

- These technologies allow to achieve outstanding spatial resolution and GEMs in particular are very versatile for different shapes.
Motivation

- In the YR meson WG, a particular channel was discussed:

 For $\Lambda \to p + \pi^-$ protons could be detected efficiently, but we need trackers in opposite direction (charge) \Rightarrow on the path to ZDC

- In general the tendency nowadays is the use of GEMs or silicon trackers \Rightarrow e.g. next talk by Manoj Jadhav – Argonne.

- These technologies allow to achieve outstanding spatial resolution and GEMs in particular are very versatile for different shapes.

- But, they require expensive R&D and special facilities with relatively expensive hardware and electronics.
Motivation

- In the YR meson WG, a particular channel was discussed:

 For $\Lambda \rightarrow p + \pi^-$ protons could be detected efficiently, but we need trackers in opposite direction (charge) \Rightarrow on the path to ZDC

- In general the tendency nowadays is the use of GEMs or silicon trackers \rightarrow e.g. next talk by Manoj Jadhav – Argonne.

- These technologies allow to achieve outstanding spatial resolution and GEMs in particular are very versatile for different shapes.

- But, they require expensive R&D and special facilities with relatively expensive hardware and electronics.

DISCLAIMER: this talk is not intended for trackers in the inner detector.
28 bars plastic scintillator
6x6 cm² x 220 cm
PMT Ø 51 cm
28 bars plastic scintillator
6x6 cm² x 220 cm
PMT Ø 51 cm

The resolution achieved by a detector like this one is:

\[\sigma_x = \frac{b-a}{\sqrt{12}} = \frac{6 \text{ cm}}{\sqrt{12}} \approx 1.73 \text{ cm} \]
Scintillators + Photomultipliers

28 bars plastic scintillator
6x6 cm² x 220 cm
PMT Ø 51 cm

The resolution achieved by a detector like this one is:

Uniform distribution \[\sigma_x = \frac{b-a}{\sqrt{12}} = \frac{6 \text{ cm}}{\sqrt{12}} \approx 1.73 \text{ cm} \]

Not a tracker detector!!
Scintillators + Photomultipliers

28 bars plastic scintillator
6x6 cm² x 220 cm
PMT Ø 51 cm

The resolution achieved by a detector like this one is:

Uniform distribution

\[\sigma_x = \frac{b-a}{\sqrt{12}} = \frac{6 \text{ cm}}{\sqrt{12}} \approx 1.73 \text{ cm} \]

Not a tracker detector!!

In fact it is **NOT** design for this purpose but for event trigger and particle separation via TOF. \[\sigma_t < 60 \text{ ps} \]
Reducing size \rightarrow fibers

The use of scintillating fibers has been in use for long time, initially with glass fiber material doped with Ce oxide, but low QE, slow component and significant optical self absorption discourage it use.
Reducing size → fibers

The use of scintillating fibers has been in use for a long time, initially with glass fiber material doped with Ce oxide, but low QE, slow component and significant optical self absorption discourage its use.

The development of plastic scintillators with special dyes improve the R&D of its use as a tracker device.
 • conventional organic scintillators show light emission out of the energy deposition site, causing poor efficiency and cross talk
Reducing size → fibers

The use of scintillating fibers has been in use for a long time, initially with glass fiber material doped with Ce oxide, but low QE, slow component and significant optical self absorption discourage its use.

The development of plastic scintillators with special dyes improve the R&D of their use as a tracker device.

- Conventional organic scintillators show light emission out of the energy deposition site, causing poor efficiency and cross talk.

Multiclad fibers changed the paradigm of organic scintillator fibers, increasing the light yield and increasing the attenuation length.

- Scintillating fibers are covered by PMMA layer for light confinement and protection of the core.
- Adding a Fluorinated polymer layer increases the light output.
Light yield

The fraction of a solid angle of light that is totally reflected as a function of the refractive index of the different layers. The light collected in the outer clad-air is not considered.

\[F_{\text{core}} = \frac{1}{2} \left(1 - \frac{n_2}{n_1} \right) \]
Light yield

The fraction of a solid angle of light that is totally reflected as a function of the refractive index of the different layers.

The light collected in the outer clad-air is not considered.

\[
F_{core} = \frac{1}{2} \left(1 - \frac{n_2}{n_1} \right)
\]

\[
F_{core} + F_{clad} = \frac{1}{2} \left[\left(\frac{n_1 - n_2}{n_1} \right) + \left(\frac{n_2 - n_3}{n_1} \right) \right] = \frac{1}{2} \left(\frac{n_1 - n_3}{n_1} \right)
\]
Light yield

The fraction of a solid angle of light that is totally reflected as a function of the refractive index of the different layers. The light collected in the outer clad-air is not considered.

Some numbers:
Kuraray SCSF-78M

- $n_1 = 1.59$
- $n_2 = 1.49$
- $n_3 = 1.42$

$F_{\text{core}} = 3.1\%$

$F_{\text{core}} + F_{\text{clad}} = 5.3\%$

$$F_{\text{core}} + F_{\text{clad}} = \frac{1}{2} \left[\left(\frac{n_1 - n_2}{n_1} \right) + \left(\frac{n_2 - n_3}{n_1} \right) \right] = \frac{1}{2} \left(\frac{n_1 - n_3}{n_1} \right)$$
Light yield

The fraction of a solid angle of light that is totally reflected as a function of the refractive index of the different layers. The light collected in the outer clad-air is not considered.

Some numbers:
Kuraray SCSF-78M
- $n_1 = 1.59$
- $n_2 = 1.49$
- $n_3 = 1.42$

$F_{core} = 3.1\%$
$F_{core} + F_{clad} = 5.3\%$

Theoretically an increase of 70% of light yield!
Photodetectors

Low light light yield requires very sensitive detectors. In addition, the increase of the number of channels makes mandatory the use of compact devices.

![Si APD array](image)

- 32 ch (8x4)
- 19.5mm x 11.2mm
- Each channel: 1.6mm x 1.6mm
Photodetectors

Low light light yield requires very sensitive detectors. In addition, the increase of the number of channels makes mandatory the use of compact devices.

16 ch (4x4)
13mm x 13mm

64 ch (8x8)
25.8mm x 25.8mm

Each channel: 3mm x 3mm
Photodetectors

Low light light yield requires very sensitive detectors. In addition, the increase of the number of channels makes mandatory the use of compact devices.

Each channel:
2mm x 2.5mm
0.8mm x 16mm
0.8mm x 7mm

64 ch (8x8)
Each channel
2.88mm x 2.88mm
Scintillator fiber detector at KaoS@MAMI

KaoS is a magnetic spectrometer, used previously at GSI.

In 2003 it was moved to the three spectrometers hall at the MAMI accelerator facility in Mainz.

It was planned to be used as a double side spectrometer in the electroproduction of hypernuclei program.

It was necessary the instrumentation of the electron side at very forward angles which must accomplish the following requirements:

- High count capability
- Good position resolution
- Good timing information

Fully instrumented

New package
Scintillator fiber detector at KaoS@MAMI

Kuraray SCSF-78M Double cladding, Ø0.83mm

One module consists of 128 fibers (4 fibers/PMT channel), glued with acrylic paint.
Kuraray SCSF-78M Double cladding, $\varnothing 0.83 \text{mm}$

One module consists of 128 fibers (4 fibers/PMT channel), glued with acrylic paint.
Scintillator fiber detector at KaoS@MAMI

Kuraray SCSF-78M Double cladding, Ø0.83mm

One module consists of 128 fibers (4 fibers/PMT channel), glued with acrylic paint.

Each mPMT powered by a C-W voltage multiplier base. Power is provided by flat cable (no need of stiff HV cables).

Hamamatsu H7259K
- 32 channels linear array
Scintillator fiber detector at KaoS@MAMI

The fiber detector summarizes:

✔ Two scintillator fiber planes of 1.9 m length x 442 mm (297 mm “active”) height
✔ 72 modules per plane 2304 channels
✔ 18432 scintillating fibers assembled

Scintillator fiber array with multianode photomultiplier readout
First prototypes design used a 0deg layout, which was beam tested.

This slanted version was chosen for the final version in order to reduce the multiplicity.
Test beam at GSI

Some numbers from 2007 GSI beam test (cocktail beam $\pi^+/p/d$ protons at 1GeV/c) and C beam of 2 AGeV energy:

- Residual of $t_A - t_B$, FWHM = 720ps (cocktail) → 510ps single plane, 330ps (carbon) → 220ps single plane

- Residual track position $X_A - X_B$, FWHM ~0.27mm (carbon)

The HERMES recoil detector

2 cylinders of 2 × 2 layers, 10° stereo angle
4992 channels

The HERMES recoil detector

SFT

SFO

SFI

2 cylinders of 2 × 2 layers, 10° stereo angle 4992 channels

LHCb SciFi

Fibers of \varnothing250 μm, 524k channels

Other examples

L. Gruber, LHCb SciFi, “Upgrading LHCb with a scintillating fibre tracker” NIM, A 958 (2020) 162025
Ok, but what happen with the EIC?

I will focus on the ZDC, as mentioned in the motivation
The Zero Degree Calorimeter (ZDC) is part of the far forward instrumentation of EIC and play a critical role for different physics topics, in particular the meson structure.

Detection of the decay channel $\Lambda \rightarrow n + \pi^0$ is feasible (...).
Detection of the other decay channel, $\Lambda \rightarrow p + \pi^-$, poses a more challenging measurement owing to its requirement of additional charged-particle trackers or a veto trigger on the path to ZDC.
Ok, but what happen with the EIC?

The Zero Degree Calorimeter (ZDC) is part of the far forward instrumentation of EIC and play a critical role for different physics topics, in particular the meson structure.

Detection of the decay channel $\Lambda \to n^+ \pi^0$ is feasible (...).

Detection of the other decay channel, $\Lambda \to p^+\pi^-$, poses a more challenging measurement owing to its requirement of additional charged-particle trackers or a veto trigger on the path to ZDC.

Here is where a scintillator fiber detector could enter.
Some parameters of the ZDC*

Igor Korover- MIT, Yuji Goto Riken, Michael Murray Kansas U – for the ECCE consortium - Detector Integration Group. July 28th 2021

* except the cross-section area, dimensions under study
Why a scintillator fiber detector?

- It is a fast detector
 - Useful for trigger purposes
- It is a well known technology
- It is easy to build
 - don’t need a special clean room to be build
 - It is mostly a craft work
- It is not expensive
 - With a good design, the fiber array is the less expensive part of the detector and easily to replace in case of accident or degradation of the fibers.
 - Electronics is always the expensive part and it is a matter of R&D&Simulation to choose the proper configuration of discriminators, ADC, TDC and/or logic modules.
- It doesn’t introduce excess of material in the path of particles
Some numbers

- Each 0deg bundle is ~1.9cm width and ~0.5 cm thick
 - \(X/X_0 \approx 1.2\% \) (mostly polystyrene \(X_0 = 43.79 \text{ g/cm}^2 \))

- Kuraray (Japan) price 7.5km of fiber:
 - ~1.6M¥ (2009) \(\rightarrow \) ~15k$ (rate 2020)

- For ZDC, cover 60x60 cm² (two planes X-Y)
 - Assuming similar layout (4 fiber/channel):
 - 60 cm/1.9cm/bundle = 32 bundles \(\rightarrow \) 32x128 fibers = 4096 fibers
 - 4096 x (60 cm + 20 cm) \(\sim \)3.3 km of fiber/plane
 - 1024 readout channels/plane

- Readout + associated electronics (discriminator+TDC)
 - Readout could be APDs, silicon photomultipliers, even multianode PMTs
Future

- I presented an idea as solution for a particular problem.
 - A scintillator fiber detector in front of the ZDC, for an efficient detection of the $\Lambda \rightarrow p+\pi^- \text{ decay channel.}$
- The immediate step is design a Geant4 simulation and test the best configuration.
- Find a consensus of the kind of detector to use.
 - As a postdoc I can’t compromise a full time research of the plausibility of this detector, but part of my time.