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Physics case

The studies of deep inelastic scattering (DIS) in the
lepton-nucleon collisions give insight into the structure of
nucleons.

l(~k) l′(~k′)

h(~P ) hadron
remnant

X( ~P ′)
x~P

Z/γ∗/W±(~q)

l(~k)+h(~P )→ l′(~k′)+X( ~P ′),

Reconstruction of collision
kinematics is the key
component.

Measurements of the scattered
lepton, hadronic final state and
knowledge of the beam energies
over-constrain the
reconstruction of event
kinematics.
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Physics case

There are multiple classical methods aimed to reconstruct the
DIS event kinematics each considering partial information from
collision event, and being a subject to limitations related to

bias related to QED radiation

the need for precise measurements of the hadronic final state

the need to measure the kinematics of the scattered lepton

uneven performance across the desired kinematic region

To some extent, the choice of the reconstruction method can
determine the size of systematic uncertainty.
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Studies with ZEUS simulated data

We concentrate on the neutral current DIS events, i.e. those with
an electron in the final state and utilize the simulated data of
ZEUS experiment and reconstruct the four-momentum transferred
to the hadronic system, Q2 = −~q · ~q = −(~k − ~k′)2 and the Bjorken

scaling variable x = Q2

2~P ·~q
.

Simulated and real data is
available for analyses.

Data preservation efforts led to
convenient and accessible data
samples.

The documentation was
appropriate to start an analysis
of the ZEUS data.
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Classical Reconstruction Methods

The kinematics of a DIS event has to be reconstructed by
measurements related to the scattered lepton or the final state
hadronic system (H).

the energy (El′) and polar angle (θl′) of the scattered lepton

the energy from the hadronic system in terms of:

δH =
∑

i∈HEi − PZ,i & PT,H =
√(∑

i∈H PX,i

)2
+
(∑

i∈H PY,i

)2
The hadronic energy flow is characterized by the angle γH, where

cos γH =
P 2
T,H − δ2H
P 2
T,H + δ2H
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Classical Reconstruction Methods and NN model

Method Requires Pro Contra

Electron El′ , θl′ precise sensitive to
(EL) QED radiation

Jacques-Blondel δH, PT,H resistant to needs precise jet
(JB) QED radiation energy measurements

Double Angle θl′ , γH no need for precise jet poor resolution at low x
(DA) energy measurements and low Q2

We aim to reconstruct the kinematics of DIS events combining
multiple classical methods with an application of deep neural
networks and hereby utilizing complete information from the
collision event.
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Kinematic Reconstruction with Deep Neural Networks

The idea is to build a neural network method that combines the
quantities determined with the classical methods in a way:

Q2
NN = AQ2

(
Q2

EL, Q
2
DA, Q

2
JB

)
+ LQ2

(
AQ2 , El′ , θl′

)
+HQ2

(
AQ2 , δH, PT,H

)
And reconstruct x, with Q2

NN as an input, in the form:

xNN = Ax (xEL, xDA, xJB) + Lx

(
Ax, Q

2
NN , El′ , θl′

)
+Hx

(
Ax, Q

2
NN , δH, PT,H

)
Neural networks can be used to reconstruct the kinematics by
weighting classical reconstructions and using all four of the
measured quantities as corrections.
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Deep Neural Networks

A neural network is the sequential application of affine
transformations and a fixed nonlinear function.

Call ΨD
m,n(α) := the set of neural networks with D hidden layers

that map Rm → Rn with activation function α.

If ψ ∈ ΨD
m,n, then

h0(x) = x,

hi+1(x) = α
(
Aih

i(x)
)

for 0 ≤ i < D

ψ(x) = ADh
D(x)

(1)

with affine transformations Ai.
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A Particular Subclass of Deep Neural Networks

Consider a particular subclass of neural networks, call it: ΦD
m,n(α).

If a function φ ∈ ΦD
m,n(α), then

h1(x) = α (A0x) ,

hi+1(x) = α
(
Aih

i(x)
)

for 0 ≤ i < D

φ(x) =W0x +
∑D

i=1Wih
i(x)

(2)

with affine transformations Ai and matrices Wi.
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Properties About the Subclass

Effective
Universal approximation capabability: can approximate any
continuous function to arbitrary accuracy

Robust
increasing the depth of the network (i.e. the number of terms
in the sum) necessarily reduces the error

Computationally Efficient
structure avoids ”vanishing” gradients arising in the
backpropagation algorithm
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Optimization Methods

The optimal function from the class ΦD
m,n(α) is defined by a

collection of parameters (ω) that minimizes the generalization
error.

With a randomly sampled data set {xi, yi}Ni=1, if N is sufficiently
large, then the generalization error can be approximated by an
empirical error (fidelity term):

1

N

N∑
i=1

`(ω, xi, yi) (3)

where ` is some loss function measuring the discrepancy between
the observed output and the neural network output.

We used the logarithmic mean square error for the fidelity term by
selecting for the loss function:

`(ω, xi, yi) = ‖ log yi − log φω(xi)‖22 (4)

12 / 36



Regularization

Due to the universality of neural networks, there is a model that
can achieve zero empirical error. In the presence of noise, then, the
model can overfit to the data sample and lose it generalizability.

There is good evidence that minimizing the `1 norm provides sparse
optimal solutions with a minimal number of nonzero elements.

The final optimization problem is:

min
ω

1

N

N∑
i=1

`(ω, xi, yi) + λ · ‖ω‖1 (5)

This optimization problem is solved using stochastic gradient
methods.
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Training Neural Network Models

The training of the neural network model was performed on
the Monte Carlo generated DIS events that were passed
through the ZEUS detector simulation and reconstructed with
the standard ZEUS software, see details in backup slides.

The selection of the events on the detector level (after the
reconstruction) was chosen to be close to the selection used in
the published ZEUS analyses of NC DIS process, see details in
backup slides.

For the training all the phase space was used, but the final
performance is presented for the specific kinematic regions
(bins). It has been measured from a similar, but statistically
independent samples. See more details on the training in the
backup slides.
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Distribution of events used for training
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Figure: Distribution of (x,Q2) for
the training set and boundaries of
bins.

Bin Q2 (GeV 2) x

1 120 - 160 0.0024 - 0.010
2 160 - 320 0.0024 - 0.010
3 320 - 640 0.01 - 0.05
4 640 - 1280 0.01 - 0.05
5 1280 - 2560 0.025 - 0.150
6 2560 - 5120 0.05 - 0.25
7 5120 - 10240 0.06 - 0.40
8 10240 - 20480 0.10 - 0.60

Table: Kinematic bins in x and Q2

used for performance comparisons.
The bins were chosen to be close to
the bins used in the analyses of
hadronic final state in the ZEUS
experiment.
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Results: distribution of logQ2
reco − logQ2
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In some bins the
improvements are seen
with a naked eye.
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Results: distribution of log xreco − log xtrue
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In some bins the
improvements are seen
with a naked eye.
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Results: RMSE in bins of x and Q2 for different methods

Bin Events Resolution of log x Resolution of logQ2/1GeV 2

1 301780 NN: 0.070 EL: 0.083 NN: 0.035 EL: 0.035
JB: 0.180 DA: 0.103 JB: 0.203 DA: 0.062

2 350530 NN: 0.069 EL: 0.082 NN: 0.040 EL: 0.043
JB: 0.167 DA: 0.096 JB: 0.192 DA: 0.064

3 138456 NN: 0.098 EL: 0.130 NN: 0.055 EL: 0.053
JB: 0.138 DA: 0.100 JB: 0.150 DA: 0.077

4 74844 NN: 0.067 EL: 0.084 NN: 0.044 EL: 0.046
JB: 0.117 DA: 0.077 JB: 0.138 DA: 0.063

5 31043 NN: 0.064 EL: 0.091 NN: 0.036 EL: 0.041
JB: 0.102 DA: 0.073 JB: 0.117 DA: 0.053

6 11475 NN: 0.053 EL: 0.079 NN: 0.033 EL: 0.036
JB: 0.083 DA: 0.061 JB: 0.100 DA: 0.045

7 3454 NN: 0.050 EL: 0.069 NN: 0.036 EL: 0.038
JB: 0.074 DA: 0.055 JB: 0.093 DA: 0.042

8 624 NN: 0.036 EL: 0.055 NN: 0.033 EL: 0.037
JB: 0.067 DA: 0.045 JB: 0.095 DA: 0.041

Smaller = better
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Discussion

In addition to a better resolution, the reconstruction with the DNN
has two important advantages over the classical methods or any
simple combination of them:

allows an extension of the model with various physics
observables in the most robust way

allows the use of the desired definition of the kinematic
observables, avoiding the intrinsic biases of the other methods

Interesting to admit:

Despite all the used samples were dominated by the events
with lower Q2 and x it has not prevented the NN approach
from reasonable performance at higher Q2 and x.
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Outlook and Conclusions

With the appropriate selection of the training set, data
enhances the DNNs sufficiently to outperform all classical
reconstruction methods on most of the kinematic range
considered.

To effectively do this comparison, we established methods to
evaluate the accuracy and robustness of a reconstruction
method.

The next step is to extend the methods to do reconstruction
of kinematic observables in semi-inclusive and exclusive
processes.

We attribute the improvements to the advantages in modern
scientific computing and machine learning methods as well as
the accessibility to computing resources.
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Deeply learning deep inelastic scattering

We expect that our and similar approaches will be used for analysis
of the ongoing and future DIS experiments.

Inclusive DIS: Paper ready for submission to JHEP.

Semi-inclusive DIS: Ongoing project with Duke University.

Exclusive DIS: Ongoing project with the Center of Nuclear
Femtography.
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Backup slides
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Theorem regarding the Subclass

Theorem

With fixed non-zero natural numbers D, m, and n, continuous
function f : X ⊆ Rm → Rn, for any ε > 0, there exists some
φ ∈ ΦD

m,n(α) such that ρ(f, φ) < ε.

Moreover, if φ(x) =W0x +
∑D

i=1Wih
i(x), as defined as in

equation 2, and for natural number 1 ≤ k ≤ D, define
εk = ρ(f,W0 +

∑k
i=1Wih

i(·)), then φ can be selected in a way in
which εk−1 ≤ εk.
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Particular NN models

Q2
NN = AQ2

(
Q2

EL, Q
2
DA, Q

2
JB

)
+ LQ2

(
AQ2 , El′ , θl′

)
+HQ2

(
AQ2 , δH, PT,H

)
where AQ2 , LQ2 , HQ2 are networks in Φ5

3,1(α), with each hidden
layer of the networks containing 2000 nodes.

xNN = Ax (xEL, xDA, xJB) + Lx

(
Ax, Q

2
NN , El′ , θl′

)
+Hx

(
Ax, Q

2
NN , δH, PT,H

)
where Ax is a network in Φ20

3,1(α) with with each hidden layer

containing 1000 nodes, and Lx, Hx are networks in Φ10
4,1(α), with

each hidden layer containing 500 nodes.
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Stochastic Gradient Methods

Stochastic gradient methods on batches of the data, accelerated
using classical momentum methods can iteratively solve the
problem.

Randomly select ω0, choose learning rates ηk that diminish to zero,
select a batch I ⊆ {1, ..., N}, and choose momentum parameter µ.
Define:

LI(ω) =
1

|I|
∑
i∈I

`(ω, xi, yi) + λ · ‖ω‖1 (6)

vk+1 = µvk − ηk∇ωLI(ω
k), (7)

ωk+1 = ωk + vk+1, (8)

Then the sequence ωk converges to a set of parameters defining
the optimal neural network.

25 / 36



Reconstruction methods

A more detailed description of the Reconstruction methods can be
found in https://old.inspirehep.net/record/332514?ln=en
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Event selection (most important cuts)

Detector status: It was required that for all the events the detector was functional.

Electron energy: At least one electron candidate with energy greater than 10GeV

Electron identification probability: The SINISTRA probability of lepton candidate being the DIS lepton
was required to be greater than 90%.

Electron isolation: The fraction of the energy not associated to the lepton was required to be less than
10% over the total energy deposited within a cone around the lepton candidate. The cone is defined with a
radius of 0.7 units in the pseudorapidity-azimuth plane around the lepton momentum direction.

Electron track matching: The tracking system covers the region of polar angles restricted to
0.3 < θ < 2.85. If the lepton candidate was within the tracking system acceptance region, there must be
a matched track. This track must have a distance of closest approach between the track extrapolation
point at the front surface of the CAL and the cluster center-of-gravity-position of less than 10 cm. The
track energy must be greater than 3GeV.

Electron position: To remove regions poorly described by Monte Carlo simulations, additional
requirements on the position of the electromagnetic shower were imposed. The events in which the lepton
was found in the following regions were rejected: RCAL where the depth was reduced due to the cooling
pipe for the solenoid, regions in-between calorimeter sections, regions close the the beam pipe.

Primary vertex position: It was required that the reconstructed primary was close to the central part of
the detector, implying −28.5 < Zvtx < 26.7cm.

Energy-longitudinal momentum balance: To suppress photoproduction and beam-gas interaction
background events and poor Monte Carlo simulations, restrictions are put on the energy-longitudinal
momentum balance. This quantity is defined as:
δ = δe + δH = (Ee′ − Pz,e′ ) + (EH − Pz,H) =

∑
i(Ei − Pz,i) where the final summation

index runs over all energy deposits in the detector. In this analysis we’ve applied a condition
38 < δ < 65 GeV.

Missing transverse energy : To remove the beam-related background and the cosmic-ray events an cut on

the missing energy was imposed. PT,miss/
√
ET < 2.5GeV 1/2, where PT,miss is the missing

transverse momentum as measured with the CAL and ET is the total transverse energy in the CAL.
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2-D plots for Q2, bins 1-3
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2-D plots for Q2, bins 4-6
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2-D plots for Q2, bins 7-8
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2-D plots for x, bins 1-3
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2-D plots for x, bins 4-6
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2-D plots for x, bins 7-8
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Event shapes
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T =

∑
i |
−→pi · −→n |∑
i |
−→pi |

, (9)

B =

∑
i |
−→pi ×−→n |

2
∑

i |
−→pi |

, (10)

M2 =
(
∑

iEi)
2 − |

∑
i
−→pi |2

(2
∑

iEi)
2 , (11)

C =
3
∑

ij |
−→pi ||−→pj | sin2 (θij)
2(
∑

i |
−→pi |)2

, (12)

where −→pi is the momentum of the final-state particle/object i used
in the calculations.
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The used software

The ROOT package of version 6.22 was used to read the ZEUS data, analyze it and prepare plain text files with
selected information to be used with the ML tools. The selected information from the plain text files was piped
using the pandas package into Keras interface to tensorflow 2.3.0 library to train the ML models. The packages
Eigen, frugally-deep, FunctionalPlus, JSON for Modern C++ were used for execution of the trained models after
these were converted into frugally-deep model format. The dependencies for the tensorflow were supplied from the
PyPi repository. To speedup the training process the CUDA framework of version 10.1 was used.
The analysis codes were compiled and executed on the Linux system with x86 64 architecture using gcc of version
7.3 and python of version 3.6.8.

The figures with the final results were produced with the PGFPlots package.
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