Accessing π GPDs through the Sullivan process at the future EIC

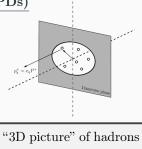
J. M. Morgado¹, F. De Soto², M. Defurne³, C. Mezrag³, H. Moutarde³, J. Rodríguez-Quintero¹, J. Segovia²

29th July 2021

¹Dpt. Ciencias Integradas, Universidad de Huelva, Huelva, Spain ²Dpt. Sistemas Fiscos, Químicos y Naturales, Universidad Pablo de Olavide, Sevilla, Spain ³DPhN/IRFU/CEA-Saclay, Gif-sur-Yvette, France

de Huelva

Email: josemanuel.morgado@dci.uhu.es


Introduction

Introduction: GPDs and hadron's strcture

Question: How can we gain insights into hadron's strcture?

Generalised parton distributions (GPDs)

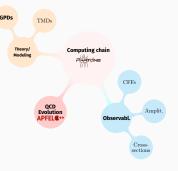
Probabilistic interpretation: probability amplitude of finding a parton at a given position in transverse plane carrying a momentum fraction "x" of the hadron's averaged light-cone momentum. [M.Burkardt-PRD:071503(62)2020]

Properties:

1. Parametrize DVCS amplitudes through CFFs.

[X.Ji-PRL:610(78)1997]

- 2. PDFs as forward limit.
- 3. Electromagnetic and gravitational FFs as Mellin moments.

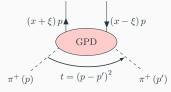

Introduction

- 1. Generalised parton distributions:
 - "3D picture" of hadrons.
 - EMT gravitational form factors.

```
[V.Bertone et al.]
-CPComm(2014),
```

[V.Bertone et al.: hep-ph/1708.00911]

- 2. Pions: DCSB Nambu-Goldstone bosons:
 - Clear window onto emergence of hadronic mass.

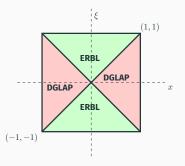

Two main questions guide this talk:

- Can we build "theoretically-complete" pion GPD models?
- Can we probe them in experiment? Pion GPDs through Sullivan process. [D.Amrath et al.-EPJC:179(58)2008]

GPD modelling

Can we build "theoretically-complete" pion GPD models?

GPD modelling: definition and properties



- x: Momentum fraction of p.
- ξ : Fraction of momentum longitudinally transferred.
- t: Momentum transfer.

Kinematics:

[M.Diehl-Phys.Rept:41(388)2003]

- DGLAP (|x| > |ξ|): Emits/takes a quark (x > 0) or antiquark (x < 0).
- ERBL: (|x| < |ξ|): Emits pair quark-antiquark.

GPD modelling: definition and properties

• Support:

[M.Diehl et al.-PLB:359(428)1998]

 $(x,\xi)\in [-1,1]\otimes [-1,1]$

• **Polynomiality:** Order-m Mellin moments are degree-(m + 1)

polynomials in ξ .

[X.Ji-JPG:1181(24)1998, A.Radyushkin-PLB:81(449)1999]

$$\int_{-1}^{1} dx x^{m} H(x,\xi,t) = \sum_{\substack{k=0\\k \text{ even}}}^{m+1} c_{k}^{(m)}(t) \xi^{k}$$

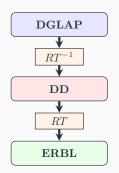
Lorentz invariance

• Positivity:

[P.V.Pobylitsa-PRD:114015(65)2002, B.Pire et al.-EPJC:103(8)1999]

$$|H^q(x,\xi,t=0)| \le \sqrt{q\left(\frac{x+\xi}{1+\xi}\right)q\left(\frac{x-\xi}{1-\xi}\right)} \quad , \qquad |x| \ge \xi$$

Positivity of Hilbert space norm


• Low energy soft-pion theorem

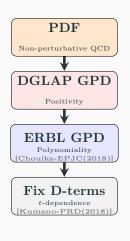
PCAC/Axial-Vector WTI

GPD modelling: covariant extension

Covariant extension: given a DGLAP-GPD, the covariant extension allows for computing the corresponding ERBL-GPD such that polynomiality is satisfied.[N.Chouika et al.-EPJC:906(77)2017]

$$H(x,\xi,t) = \mathcal{R}\left[h\left(\beta,\alpha,t\right)\right] + \frac{1}{|\xi|}D^{+}\left(\frac{x}{\xi},t\right) + sign\left(\xi\right)D^{-}\left(\frac{x}{\xi},t\right)$$

- **1.** Build positive DGLAP GPD \Rightarrow How?
- **2.** Covariant extension: ERBL GPD
- **3.** Soft pion theorem: fix $D^{\pm}(\alpha, 0)$


GPD properties			
Support	/	Positivity	
[Diehl-PLB(1998)]	V	[PobyPRD(2002), Pire-EPJC(1999)]	V
Polynomiality	/	Soft-pion	/
[Ji-JPG(1998), RadyuPLB(1999)]	V	[PolyNPB(1999), MezrPLB(2015)]	V

GPD modelling: from separable LFWFs to postive DGLAP GPDs

Question: How can we build a positive DGLAP GPD?

2. LT.

1. Overlap representation [M.Diehl-NPB:33(569)2001]

$$H^{q}(x,\xi,t)|_{|x|\geq\xi} = \int \frac{d^{2}k_{\perp}}{16\pi^{3}} \Psi^{q*}\left(x_{-},k_{\perp,-}^{2}\right) \Psi^{q}\left(x_{+},k_{\perp,+}^{2}\right)$$
2. Assume factorisation of the LFWF
J.-L.Zhang et al.-PLB:136158(815)2021]

$$\Psi^{q}\left(x,k_{\perp}^{2}\right) \propto \varphi\left(x\right)\phi\left(k_{\perp}^{2}\right)$$

$$\downarrow^{(Overalp rep.)}$$

$$H^{q}\left(x,\xi,t\right)|_{|x|\geq\xi} = \sqrt{q\left(\frac{x-\xi}{x-\xi}\right)q\left(\frac{x+\xi}{x-\xi}\right)}\Phi\left(x,\xi,t\right)$$

$$H^{q}(x,\xi,t)|_{|x|\geq\xi} = \sqrt{q}\left(\frac{1-\xi}{1-\xi}\right)q\left(\frac{1+\xi}{1+\xi}\right)\Phi(x,\xi,t)$$

$$\downarrow^{(t=0)}$$

$$H^{q}(x,\xi,0)|_{|x|\geq\xi} = \sqrt{q}\left(\frac{x-\xi}{1-\xi}\right)q\left(\frac{x+\xi}{1+\xi}\right)$$

Positivity saturated

Pion GPDs: Positive DGLAP GPDs

• Under certain PTIR, chiral symmetry allows to factorize LFWF: [J.-L.Zhang et al.-PLB:136158(815)2021]

$$\Psi_{\pi}^{\lambda_1\lambda_2}\left(x,k_{\perp}^2\right) = \sqrt{q_{\pi}\left(x\right)} \frac{i^{\lambda_1\lambda_2}M^2}{\left(k_{\perp}^2 + M^2\right)^2}$$

• Pion GPD saturating positivity

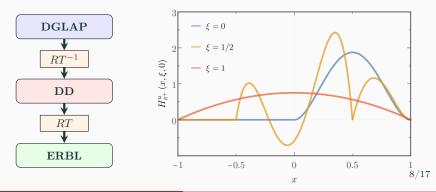
$$H_{\pi}^{q}(x,\xi,t)|_{\text{DGLAP}} = \frac{\sqrt{q_{\pi}(x_{-})q_{\pi}(x_{+})}}{(1+z^{2})^{2}} \left[3 + \frac{1-2z}{1+z}\frac{\operatorname{arctanh}\left(\sqrt{\frac{z}{1+z}}\right)}{\sqrt{\frac{z}{1+z}}}\right]$$
$$z = -t\left(1-x\right)^{2}/4M^{2}\left(1-\xi^{2}\right)$$

• PDF parametrization

$$q_{\pi}(x) = 30x^{2}(1-x)^{2}$$

$$(\widehat{O})_{1.5} = -\xi = 1/4 - \xi = 1/2 - \xi = 1/2$$

 $- \xi = 0$


Pion GPDs: covariant extension

Covariant extension:

$$H^{q}(x,\xi,t) = \mathcal{R}\left[h\left(\beta,\alpha,t\right)\right] + \frac{1}{|\xi|}D^{+}\left(\frac{x}{\xi},t\right) + sgn\left(\xi\right)D^{-}\left(\frac{x}{\xi},t\right)$$

Fix D-terms with soft pion theorem: [M.V.Polyakov-NPB:231(555)1999, C.Mezrag at al.-PLB:190(741)2015]

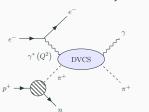
$$\begin{aligned} H_{\pi^+}^{I=0}\left(x,\xi,t\right)\big|_{\xi=1,t=0} &= H_{\pi^+}\left(x,\xi,t\right) - H_{\pi^+}\left(-x,\xi,t\right)|_{\xi=1,t=0} = 0 \\ H_{\pi^+}^{I=1}\left(x,\xi,t\right)\big|_{\xi=1,t=0} &= H_{\pi^+}\left(x,\xi,t\right) + H_{\pi^+}\left(-x,\xi,t\right)|_{\xi=1,t=0} = \varphi\left(\frac{1+x}{2}\right) \end{aligned}$$

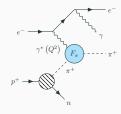
Phenomenology of pion GPDs

Can we probe them in experiment?

Phenomenology of pion GPDs: Sullivan process

We have stablished a way of building pion GPD models **fulfilling all** of the QCD theoretical constraints, so...


Question: Can we probe those pion GPDs through experiment?


DVCS amplitudes are parametrized by hadron GPDs. [X.Ji-PRD:7114(55)1997]

Sullivan process [J.D.Sullivan-PRD:1732(5)1972]

One pion exchange approximation: [D.Amrath et al.-EPJC:179(58)2008]

- $-t < 0, 6 \,\text{GeV}^2$ $\sigma_L >> \sigma_\perp$ Met at EIC [EICYR:phys.ins-det/2103.05419]

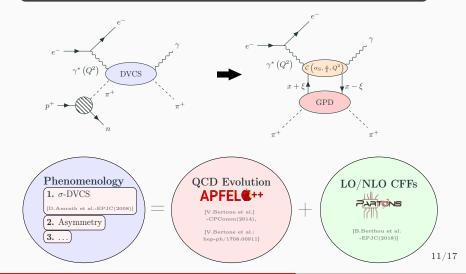
Employed for EFFs. [G.M.Huber at al.-

PRC:045203(78)2008]

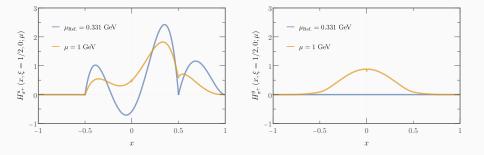
Can we probe pion GPDs?

[D.Amrath at al.-EPJC:179(58)2008]

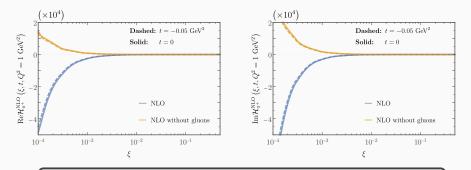
Phenomenology of pion GPDs: Sullivan process


In fact... this has been advocated in the recent EIC-Yellow report $_{\rm [EICYR:phys.ins-det/2103.05419]}$

Science Question	Key Measurement	Key Requirements
What are the quark and gluon energy contributions to the pion mass?	Pion structure function data over a range of x and Q^2 .	 Need to uniquely determine <i>e</i> + <i>p</i> → <i>e'</i> + <i>X</i> + <i>n</i> (low − <i>t</i>) CM energy range ~10-100 GeV Charged and neutral currents desirable
Is the pion full or empty of gluons as viewed at large Q ² ?	Pion structure function data at large $\ensuremath{\mathbb{Q}}^2.$	Charged and neutral currents desirable CM energy ~100 GeV Inclusive and open-charm detection
What are the quark and gluon energy contributions to the kaon mass?	Kaon structure function data over a range of x and Q^2 .	 Need to uniquely determine e + p → e' + X + Δ/Σ⁰ (low −t) CM energy range ~10-100 GeV
Are there more or less gluons in kaons than in pions as viewed at large Q ² ?	Kaon structure function data at large Q^2 .	CM energy ~100 GeV Inclusive and open-charm detection
Can we get quantitative guidance on the emergent pion mass mechanism?	Pion form factor data for $Q^2 = 10{\text{-}}40 \text{ (GeV}/c)^2$.	 Need to uniquely determine exclusive process <i>e</i> + <i>p</i> → <i>e'</i> + π⁺ + π (low −<i>l</i>) <i>e</i> + <i>p</i> and <i>e</i> + <i>D</i> at similar energies CM energy ~10-75 GeV
What is the size and range of interference between emergent-mass and the Higgs-mass mechanism?	Kaon form factor data for $Q^2 = 10$ -20 (GeV/ c) ² .	 Need to uniquely determine exclusive process <i>c</i> + <i>p</i> → <i>c'</i> + <i>K</i> + Λ (low −<i>t</i>) L/T separation at CM energy ~10-20 GeV Λ/Σ⁰ ratios at CM energy ~10-50 GeV
What is the difference between the impacts of emergent- and Higgs-mass mechanisms on light-quark behavior?	Behavior of (valence) up quarks in pion and kaon at large x.	 CM energy ~20 GeV (lowest CM energy to access large-x region) Higher CM energy for range in Q² desirable
What is the relationship between dynamically chiral symmetry breaking and confinement?	Transverse-momentum dependent Fragmentation Functions of quarks into pions and kaons.	 Collider kinematics desirable (as compared to fixed-target kinematics) CM energy range ~20-140 GeV
More speculative observables		
What is the trace anomaly contribution to the pion mass?	Elastic J/Ŧ production at low W off the pion.	 Need to uniquely determine exclusive process <i>e</i> + <i>p</i> → <i>e⁺</i> + <i>l</i>/Ψ + π⁺ + <i>n</i> (low −<i>l</i>) High luminosity (≥ 10³⁴ cm⁻² sec⁻¹) CM energy ~70 GeV
Can we obtain tomographic snapshots of the pion in the transverse plane? What is the pressure distribution in a pion?	Measurement of DVCS off pion target as defined with Sullivan process.	 Need to uniquely determine exclusive process <i>e</i> + <i>p</i> → <i>e⁺</i> + <i>γ</i> + <i>π⁺</i> + <i>π</i> (low −<i>l</i>) High luminosity (≥ 10³⁴ cm⁻² sec⁻¹) CM energy ~10-100 GeV
Are transverse momentum distributions universal in pions and protons?	Hadron multiplicities in SIDIS off a pion target as defined with Sullivan process.	 Need to uniquely determine SIDIS off pion e + p → e' + h + X + n (low − t) High luminosity (10³⁴ cm⁻² sec⁻¹) e + p and e + D a tsimilar energies desirable CM energy ~10-100 GeV

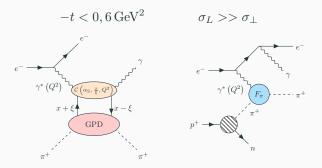

Let us see if that would be feasible in a future electron-ion collider.

Phenomenology of pion GPDs:


Goal: Employ our GPD models to analyse DVCS contribution the Sullivan process in the one-pion exchange approximation.

Phenomenology of pion GPDs: QCD evolution

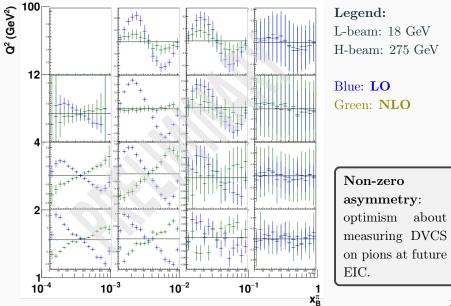
Phenomenology of pion GPDs: Compton Form Factors



Gluon dominance makes essential at least NLO accuracy in any phenomenlogical analysis of DVCS at an EIC.

Phenomenology of pion GPDs: DVCS and Sullivan process

Can we measure DVCS?


One pion exchange approximation: [D.Amrath at al.-EPJC:179(58)2008]

Changing lepton polarisation one can (formally) access interference between DVCS and BH amplitudes.

 $Is \ it \ experimentally \ feasible?$

Phenomenology of pion GPDs: Asymmetry (EIC)

15/17

Summary and perspectives

Summary and perspectives

Summary

- 1. Pion GPD models fulfilling every theoretical constraint
 - Polynomiality: Covariant extension.
 - Positivity
 - PCAC/AV-WTI: Soft pion theorem.
 - Agreement with experimental data for EFFs and GFFs.
- 2. PARTONS implements complete computing chain
 - From GPDs to DVCS CFFs
 - From DVCS CFFs to observables
- 3. DVCS on virtual pions influenced by gluon content
 - Higher order analysis needed for phenomenology.
- 4. Pion structure to be tested at future electron-ion colliders
 - Insights into EHM could be gained experimentally.

Summary and perspectives

Perspectives

Currently at work

- 1. Exploit realistic and phenomenological pion PDF
- 2. Extension to EicC.
- 3. Comparison with previous studies
 - Original paper by D. Amrath, M. Diehl and J. P. Lansberg [D.Amrath et al.-EPJC:179(58)2008]

Forthcoming developments

- 4. Extension of the computating chain
 - Higher order analysis
 - Baryons

Thank you!