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Motivation

Proton:
• τ ∼ ∞⇒ H |Proton〉 = M |Proton〉, (pure) energy eigenstate.
• Parton model treats proton as collection of nearly free particles
• Suggested resolution of this apparent paradox: quantum entanglement

(arXiv.1702.03489,Kharzeev & Levin)
• Postulation: reduced density matrix for observed parton is diagonal in

particle number basis

Color Glass Condensate:
• Hamiltonian is non-perturbative and unknown, so is the wavefunction
• A model for proton wavefunction

|proton〉 =
∑
ρa

|v; ρa〉 ⊗ |s; ρa, Ab〉

Is CGC reduced density matrix diagonal in gluon number
basis?
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Reduced density matrix
Density matrix ρ̂(A,B)→ reduced density matrix

ρ̂A = TrB ρ̂(A,B)

Here A can be probed in DIS partons of the parton model;
B is the unobserved part of the parton wavefunction.

The property of interest: if ρ̂(A,B) is pure, non-pure reduced
density matrix ρ̂A → entanglement

from arXiv.1904.11974
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Quantum entropies

Common entropies in quantum information theory:

Renyi entropy SNR = 1
1−N ln Tr

{
ρ̂N
}

von Neumann entropy SV = limN→1 S
N
R = −Tr{ρ̂ ln ρ̂}

Entropy of entanglement: entropy of the reduced density matrix
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Entropy of ignorance

Any experimental measurement is limited: one can study only
part of the full ρ̂.

Parton model: most (if not all) observables probe diagonal
components of the density matrix in the number of parton
representation.

Ignorance density matrix: replace the off-diagonal elements of
the density matrix with zeros. The Ignorance density matrix is
positive-definite and is definitely not pure.

Entropy of ignorance: entropy of the ignorance density
matrix
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Example

Given a pure state |φAB〉 =
√

2
2 |0A〉⊗ |0B〉+

1
2 |0A〉⊗ (|0B〉+ |1B〉)

ρ̂A =
1

4

[
2
√

2√
2 2

]
ρ̂IA =

1

4

[
2 0
0 2

]
The ignorance density matrix ρIA is defined in particle number
basis.

SV (ρ̂A) ∼ 0.426 SV (ρ̂IA) ∼ 0.693
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Proton wave function

CGC model for Proton wavefunction,

|proton〉 =
∑
ρa

|v; ρa〉 ⊗ |s; ρa, Ab〉

where

|v〉 describes the valance dof

|s〉 stands for soft gluons

ρa(x) is the color charge density of the valance modes

Ab is the gluon field generated from the source ρa
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Reduced density matrix for soft gluons in MV model

Our goal is the reduced density matrix for soft gluons

ρ̂s = Trv(|v〉 〈v| ⊗ |s〉 〈s|)

In MV model

〈v|v〉 = exp

{
−
∫
k

ρa(k)ρ∗a(k)

2µ2

}
Trv ⇒

∫
D[ρa]

|s〉 = C |0〉 ; C = exp

{
i

∫
k
bia(k)φ∗ia

}
bia(k) =

igki

k2
ρa(k) +O

(
ρ2
a

)
φ∗ia (k) = ai†a (k) + aia(−k)
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Entropy of entanglement

ρ̂(φ,Φ) = N
∫
D[ρa]e

−
∫
k
ρa(k)ρ

∗
a(k)

2µ2 〈φ| C |0〉〈0| C† |Φ〉

To compute the entanglement entropy, one recall

−Tr{ρ̂ ln(ρ̂)} = lim
N→1

1

1−N
ln
(
Tr
{
ρ̂N
})

and in terms of functional integrals

Tr
{
ρ̂N
}

=

∫
D[φ1, φ2, ..φN ]ρ(φ1, φ2)ρ(φ2, φ3)...ρ(φN , φ1)
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Analytic results for entropy of entanglement
(Leading order)

S2
R = 1

2
(N2
c − 1)S⊥

∫ d2q

(2π)2
ln

(
1 + 4 g

2µ2

q2

)
.

SV = 1
2
(N2
c − 1)S⊥

∫ d2q

(2π)2

[
ln

(
g2µ2

q2

)
+√

1 + 4 g
2µ2

q2
ln

(
1 + q2

2g2µ2
+ q2

2g2µ2

√
1 + 4 g

2µ2

q2

)]
.

Extensive in terms of
transverse area S⊥

limq→∞ S(q) = 0

ArXiv.1506.05394 by Alex Kovner,

Michael Lublinsky
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Soft gluon in particle number basis

Recall the definition of soft gluon state

|s〉 = ei
∫
k ba(k)(a†a(k)+aa(−k)) |0〉

Discretize the momentum
∫

dk2

(2π)2
→
∑ ∆2

(2π)2

The coherent operator can be rewritten as

C |0〉 = ei
∫
k ba(k)a†a(k)+b∗a(k)aa(k) |0〉 = ei

∫
k ba(k)a

†
a(k)e−

1
2

∫
k
g2

k2
|ρa|2 |0〉

Expanding e
i ∆2

(2π)2
ba(k)a

†
a(k)

will allow us to do calculation in
particle number basis.
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Matrix elements in particle number basis
For a single momemtum mode q, including normalization

〈nc(q),mc(−q)|ρ̂s(q)|αc(q), βc(−q)〉

= (1−R)
(n+ β)!√
n!m!α!β!

(
R

2

)n+β

δ(n+β),(m+α) ; R = (1 +
q2

2g2µ2
)−1

Nonzero off-diagonal elements, eg, 〈0, 0|ρ̂s(q)|1, 1〉 = (1−R)R
2

The delta function is from the gaussian integral of ρa(q), the
diagonal matrix elements are

〈nc(q),mc(−q)|ρ̂s(q)|nc(q),mc(−q)〉

= (1−R)
(nc +mc)!

nc!mc!

(
R

2

)nc+mc

12



Ratio between entropies of entanglement and ignorance

ρnm ∝ (1−R)Rmc+nc at
momentum q

R = (1 +
q2

2g2µ2
)
−1

At large q, SI ' SE
• R ' 0
• vacuum contribution

dominates

At small q, SI > SE
• R ∼ O(1)
• higher states and interference

terms are also important
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Experimental observation and the entropy of ignorance

Observation was done in particle number basis in experiment
Sentanglement ⇒ Shadron = −

∑
P (Nh) ln(P (Nh))

Kharzeev & Levin
• The reduced density matrix ρ̂r =

∑
Np

PNp |Np〉〈Np|
• S = −

∑
PNp ln

(
PNp

)
• At small x, entropy of gluon ⇒ entropy of hadron

S ' ln
(
xG(x,Q2)

)
ln
(
xG(x,Q2)

)
corresponds to entropy of ignorance in our

calculation
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DIS data from HERA

ln
(
xG(x,Q2)

)
overestimates hadron
entropy

Difference becomes
small at large Q2

which is consistent
with our analysis
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arXiv 2011.01812, H1 Collaboration
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In what basis SI = SE?
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Thermal density matrix

A different perspective, consider the following reduced density
matrix

ρ̂r = (1− e−βω0)
∑
n=0

e−nβω0 |n〉〈n|

where n is the energy level, and define f = 1
eβω0−1

. The
corresponding von Neumann entropy is

SV = (1 + f) ln(1 + f)− f ln(f)
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A further examination of CGC SV

SV =
1

2
(N

2
c − 1)S⊥

∫
d2q

(2π)2

ln( g2µ2

q2

)
+

√
1 + 4

g2µ2

q2
ln

1 +
q2

2g2µ2
+

q2

2g2µ2

√
1 + 4

g2µ2

q2



If set βω0 = 2 ln
(

q
2gµ +

√
1 + q2

4g2µ2

)
, we recover the same

structure

SV =
1

2
(N2

c − 1)S⊥

∫
d2q

(2π)2
[(1 + f) ln(1 + f)− f ln(f)]

Which indicates the leading order CGC density matrix describe a
thermal system of quasi− particles

c(q) =
1

2
(
√
α+

1√
α

) a(q)+
1

2
(
√
α− 1√

α
) a†(−q)

where α =

√
1 +

4g2µ2

q2
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Conclusion

CGC provides a calculable model for proton wave function

In CGC, density matrix for soft gluons is not diagonal in
particle number basis; this contradicts to Kharzeev and
Levin’s assumption

Entropy of ignorance overestimates entropy of hadrons

CGC reduced density matrix can be diagonalized into thermal
form
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Through diagonalization of ρ̂r

In field basis

ρ̂r =

∫
D[φ,Φ] ρr(φ,Φ)|φ〉〈Φ|

To diagonalize it, we construct a wave functional

|Ψ〉 =

∫
D[ψ]f(ψ)|ψ〉

and we then have the eigen-equation

ρ̂r|Ψ〉 = λ|Ψ〉
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Through diagonalization of ρ̂r

In terms of field explicitly∫
D[Φ] ρr(φ,Φ)f(Φ) = λf(φ)

Our assumption is based on quantum harmonic oscillator such that
the ground state is given by

f(φ) = exp{−αφφ∗}

One can build higher excited states use ladder operators.
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Thermal eigenvalues

It turns out, the reduced density matrix can be exactly
diagonalized in the ”quantum harmonic oscillator” basis, with
Boltzmann weight eigenvalues.

λn = exp

{
−(

1

2
+ n)ωβ

}
where n=0, 1, 2,.....

βω = 2 ln

(
q

2gµ
+

√
1 +

q2

4g2µ2

)
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Connection to xG(1)(x,Q) and xh(1)(x,Q)

Leading order:

〈bia(k)bjb(k)〉 = g2µ2δab
kikj

k4
(1)

Full result:

〈bai (k)bbj(q)〉 =
(2π)6

4πS2
⊥(N2

c − 1)
δabδ

(2)(k + q)xGijWW (x, k) (2)

where

xGijWW (x, k) =
1

2
xG(1)(x, k)δij − 1

2
(δij − 2kikj

k2
)xh(1)(x, k) (3)
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Ratio of entropies for full result
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PP collision data from LHC

ArXiv.1904.11974,by Zhoudunming Tu, Dmitri E. Kharzeev,

Thomas Ullrich

SParton = ln
(
xG(x,Q2)

)
Shadron = −

∑
P (N) lnP (N)
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