Entanglement, partial set of measurements, and diagonality of the density matrix in the parton model

Haowu Duan

North Carolina State University arXiv.2001.01726, with Alex Kovner and Vladimir V. Skokov

EIC Early Career Workshop 2021

Motivation

Proton:

- $\tau \sim \infty \Rightarrow H | \mathsf{Proton} \rangle = M | \mathsf{Proton} \rangle$, (pure) energy eigenstate.
- · Parton model treats proton as collection of nearly free particles
- Suggested resolution of this apparent paradox: quantum entanglement (arXiv.1702.03489,Kharzeev & Levin)
- Postulation: reduced density matrix for observed parton is diagonal in particle number basis
- Color Glass Condensate:
 - · Hamiltonian is non-perturbative and unknown, so is the wavefunction
 - A model for proton wavefunction

$$| {
m proton}
angle = \sum_{
ho_a} | v ;
ho_a
angle \otimes | s ;
ho_a, A_b
angle$$

Is CGC reduced density matrix diagonal in gluon number basis?

Reduced density matrix

Density matrix $\hat{\rho}(A,B) \rightarrow$ reduced density matrix

$$\hat{\rho}_A = \operatorname{Tr}_B \hat{\rho}(A, B)$$

- Here A can be probed in DIS partons of the parton model;
 B is the unobserved part of the parton wavefunction.
- The property of interest: if $\hat{\rho}(A, B)$ is pure, non-pure reduced density matrix $\hat{\rho}_A \rightarrow$ entanglement

from arXiv.1904.11974

Common entropies in quantum information theory:

Renyi entropy
$$S_R^N = \frac{1}{1-N} \ln \operatorname{Tr} \left\{ \hat{\rho}^N \right\}$$

• von Neumann entropy
$$S_V = \lim_{N \to 1} S_R^N = -\operatorname{Tr}\{\hat{\rho} \ln \hat{\rho}\}$$

Entropy of entanglement: entropy of the reduced density matrix

Entropy of ignorance

- Any experimental measurement is limited: one can study only part of the full $\hat{\rho}$.
- Parton model: most (if not all) observables probe diagonal components of the density matrix in the number of parton representation.
- Ignorance density matrix: replace the off-diagonal elements of the density matrix with zeros. The Ignorance density matrix is positive-definite and is **definitely** not pure.
- Entropy of ignorance: entropy of the ignorance density matrix

Example

Given a pure state $|\phi_{AB}\rangle = \frac{\sqrt{2}}{2} |0_A\rangle \otimes |0_B\rangle + \frac{1}{2} |0_A\rangle \otimes (|0_B\rangle + |1_B\rangle)$

$$\hat{\rho}_A = \frac{1}{4} \begin{bmatrix} 2 & \sqrt{2} \\ \sqrt{2} & 2 \end{bmatrix} \qquad \hat{\rho}_A^I = \frac{1}{4} \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$$

The ignorance density matrix ρ_A^I is defined in particle number basis.

$$S_V(\hat{\rho}_A) \sim 0.426 \quad S_V(\hat{\rho}_A^I) \sim 0.693$$

Proton wave function

CGC model for Proton wavefunction,

$$| {
m proton}
angle = \sum_{
ho_a} | v;
ho_a
angle \otimes | s;
ho_a, A_b
angle$$

where

- $\blacksquare \left| v \right\rangle$ describes the valance dof
- \blacksquare $|s\rangle$ stands for soft gluons
- $\rho_a(x)$ is the color charge density of the valance modes
- A_b is the gluon field generated from the source ρ_a

Reduced density matrix for soft gluons in MV model

Our goal is the reduced density matrix for soft gluons

 $\hat{\rho}_s = \operatorname{Tr}_v(|v\rangle \langle v| \otimes |s\rangle \langle s|)$

In MV model

$$\langle v|v\rangle = \exp\left\{-\int_{k} \frac{\rho_{a}(k)\rho_{a}^{*}(k)}{2\mu^{2}}\right\}$$
$$\operatorname{Tr}_{v} \Rightarrow \int D[\rho_{a}]$$
$$|s\rangle = \mathcal{C} |0\rangle ; \quad \mathcal{C} = \exp\left\{i\int_{k} b_{a}^{i}(k)\phi_{a}^{*i}\right\}$$
$$b_{a}^{i}(k) = \frac{igk^{i}}{k^{2}}\rho_{a}(k) + \mathcal{O}(\rho_{a}^{2})$$
$$\phi_{a}^{*i}(k) = a_{a}^{i\dagger}(k) + a_{a}^{i}(-k)$$

Entropy of entanglement

$$\hat{\rho}(\phi, \Phi) = \mathcal{N} \int D[\rho_a] e^{-\int_k \frac{\rho_a(k)\rho_a^*(k)}{2\mu^2}} \langle \phi | \mathcal{C} | 0 \rangle \langle 0 | \mathcal{C}^{\dagger} | \Phi \rangle$$

To compute the entanglement entropy, one recall

$$-\operatorname{Tr}\{\hat{\rho}\ln(\hat{\rho})\} = \lim_{N \to 1} \frac{1}{1-N}\ln(\operatorname{Tr}\{\hat{\rho}^N\})$$

and in terms of functional integrals

$$\operatorname{Tr}\{\hat{\rho}^{N}\} = \int D[\phi_{1}, \phi_{2}, ..\phi_{N}]\rho(\phi_{1}, \phi_{2})\rho(\phi_{2}, \phi_{3})...\rho(\phi_{N}, \phi_{1})$$

Analytic results for entropy of entanglement (Leading order)

$$S_R^2 = \frac{1}{2} (N_c^2 - 1) S_\perp \int \frac{d^2 q}{(2\pi)^2} \ln \left(1 + 4 \frac{g^2 \mu^2}{q^2} \right).$$

- $$\begin{split} S_V &= \frac{1}{2} (N_c^2 1) S_\perp \int \frac{d^2 q}{(2\pi)^2} \left[\ln \left(\frac{g^2 \mu^2}{q^2} \right) + \\ \sqrt{1 + 4 \frac{g^2 \mu^2}{q^2}} \ln \left(1 + \frac{q^2}{2g^2 \mu^2} + \frac{q^2}{2g^2 \mu^2} \sqrt{1 + 4 \frac{g^2 \mu^2}{q^2}} \right) \right] \end{split}$$
 - Extensive in terms of transverse area S_⊥
 - $\blacksquare \lim_{q \to \infty} S(q) = 0$

ArXiv.1506.05394 by Alex Kovner, Michael Lublinsky

NC STATE UNIVERSITY

Soft gluon in particle number basis

Recall the definition of soft gluon state

$$|s\rangle = e^{i\int_k b_a(k)(a_a^{\dagger}(k) + a_a(-k))} |0\rangle$$

- Discretize the momentum $\int \frac{dk^2}{(2\pi)^2} \rightarrow \sum \frac{\Delta^2}{(2\pi)^2}$
- The coherent operator can be rewritten as

$$\mathcal{C} \left| 0 \right\rangle = e^{i \int_{k} b_{a}(k) a_{a}^{\dagger}(k) + b_{a}^{*}(k) a_{a}(k)} \left| 0 \right\rangle = e^{i \int_{k} b_{a}(k) a_{a}^{\dagger}(k)} e^{-\frac{1}{2} \int_{k} \frac{g^{2}}{k^{2}} |\rho_{a}|^{2}} \left| 0 \right\rangle$$

Expanding $e^{i\frac{\Delta^2}{(2\pi)^2}b_a(k)a_a^{\dagger}(k)}$ will allow us to do calculation in particle number basis.

Matrix elements in particle number basis

For a single momentum mode q, including normalization

$$\langle n_c(q), m_c(-q) | \hat{\rho}_s(q) | \alpha_c(q), \beta_c(-q) \rangle$$

= $(1-R) \frac{(n+\beta)!}{\sqrt{n!m!\alpha!\beta!}} \left(\frac{R}{2}\right)^{n+\beta} \delta_{(n+\beta),(m+\alpha)}; \quad R = (1+\frac{q^2}{2g^2\mu^2})^{-1}$

Nonzero off-diagonal elements, eg, $\langle 0, 0 | \hat{\rho}_s(q) | 1, 1 \rangle = \frac{(1-R)R}{2}$ The delta function is from the gaussian integral of $\rho_a(q)$, the diagonal matrix elements are

$$\langle n_c(q), m_c(-q) | \hat{\rho}_s(q) | n_c(q), m_c(-q) \\ = (1-R) \frac{(n_c + m_c)!}{n_c! m_c!} \left(\frac{R}{2}\right)^{n_c + m_c}$$

Ratio between entropies of entanglement and ignorance

$$\ \ \, \rho_{nm} \propto (1-R) R^{m_c+n_c} \ \, {\rm at} \\ {\rm momentum} \ \, {\rm q} \ \ \,$$

$$R = (1 + \frac{q^2}{2g^2\mu^2})^{-1}$$

- At large q, $S_I \simeq S_E$
 - *R* ≃ 0
 - vacuum contribution dominates

• At small q,
$$S_I > S_E$$

•
$$R \sim \mathcal{O}(1)$$

 higher states and interference terms are also important

NC STATE UNIVERSITY

Experimental observation and the entropy of ignorance

- Observation was done in particle number basis in experiment $S_{\text{entanglement}} \Rightarrow S_{\text{hadron}} = -\sum P(N_h) \ln(P(N_h))$
- Kharzeev & Levin
 - The reduced density matrix $\hat{\rho}_r = \sum_{N_p} P_{N_p} |N_p \rangle \langle N_p|$

•
$$S = -\sum P_{N_p} \ln \left(P_{N_p} \right)$$

• At small x, entropy of gluon \Rightarrow entropy of hadron

$$S \simeq \ln \left(x G(x, Q^2) \right)$$

 $\blacksquare \ln \left(x G(x,Q^2) \right)$ corresponds to entropy of ignorance in our calculation

DIS data from HERA

- ln(xG(x, Q²))
 overestimates hadron
 entropy
- Difference becomes small at large Q² which is consistent with our analysis

NC STATE

arXiv 2011.01812, H1 Collaboration

 $0 < \eta^* < 4.0$

In what basis $S_I = S_E$?

Thermal density matrix

A different perspective, consider the following **reduced** density matrix

$$\hat{\rho}_r = (1 - e^{-\beta\omega_0}) \sum_{n=0} e^{-n\beta\omega_0} |n\rangle \langle n|$$

where n is the energy level, and define $f = \frac{1}{e^{\beta\omega_0} - 1}$. The corresponding von Neumann entropy is

$$S_V = (1+f)\ln(1+f) - f\ln(f)$$

A further examination of CGC S_V

$$S_V = \frac{1}{2}(N_c^2 - 1)S_{\perp} \int \frac{d^2q}{(2\pi)^2} \left[\ln\left(\frac{g^2\mu^2}{q^2}\right) + \sqrt{1 + 4\frac{g^2\mu^2}{q^2}} \ln\left(1 + \frac{q^2}{2g^2\mu^2} + \frac{q^2}{2g^2\mu^2}\sqrt{1 + 4\frac{g^2\mu^2}{q^2}}\right) \right]$$

If set $\beta\omega_0 = 2\ln\left(\frac{q}{2g\mu} + \sqrt{1 + \frac{q^2}{4g^2\mu^2}}\right)$, we recover the same structure

$$S_V = \frac{1}{2} (N_c^2 - 1) S_\perp \int \frac{d^2 q}{(2\pi)^2} \left[(1+f) \ln(1+f) - f \ln(f) \right]$$

Which indicates the leading order CGC density matrix describe a thermal system of quasi - particles

$$c(q) = \frac{1}{2}(\sqrt{\alpha} + \frac{1}{\sqrt{\alpha}}) \ a(q) + \frac{1}{2}(\sqrt{\alpha} - \frac{1}{\sqrt{\alpha}}) \ a^{\dagger}(-q)$$
where $\alpha = \sqrt{1 + \frac{4g^2\mu^2}{q^2}}$

Conclusion

- CGC provides a calculable model for proton wave function
- In CGC, density matrix for soft gluons is not diagonal in particle number basis; this contradicts to Kharzeev and Levin's assumption
- Entropy of ignorance overestimates entropy of hadrons
- CGC reduced density matrix can be diagonalized into thermal form

Through diagonalization of $\hat{\rho}_r$

In field basis

$$\hat{\rho}_r = \int D[\phi, \Phi] \ \rho_r(\phi, \Phi) |\phi\rangle \langle \Phi|$$

To diagonalize it, we construct a wave functional

$$|\Psi\rangle = \int D[\psi] f(\psi) |\psi\rangle$$

and we then have the eigen-equation

$$\hat{\rho}_r |\Psi\rangle = \lambda |\Psi\rangle$$

Through diagonalization of $\hat{\rho}_r$

In terms of field explicitly

$$\int D[\Phi] \ \rho_r(\phi, \Phi) f(\Phi) = \lambda f(\phi)$$

Our assumption is based on quantum harmonic oscillator such that the ground state is given by

$$f(\phi) = \exp\{-\alpha\phi\phi^*\}$$

One can build higher excited states use ladder operators.

Thermal eigenvalues

It turns out, the reduced density matrix can be exactly diagonalized in the "quantum harmonic oscillator" basis, with Boltzmann weight eigenvalues.

$$\lambda_n = \exp\left\{-(\frac{1}{2}+n)\omega\beta\right\}$$

where n=0, 1, 2,....

$$\beta\omega = 2\ln\left(\frac{q}{2g\mu} + \sqrt{1 + \frac{q^2}{4g^2\mu^2}}\right)$$

Connection to $xG^{(1)}(x,Q)$ and $xh^{(1)}(x,Q)$

Leading order:

$$\langle b_a^i(k)b_b^j(k)\rangle = g^2\mu^2\delta^{ab}\frac{k^ik^j}{k^4} \tag{1}$$

Full result:

$$\langle b_i^a(k)b_j^b(q)\rangle = \frac{(2\pi)^6}{4\pi S_{\perp}^2(N_c^2-1)}\delta_{ab}\delta^{(2)}(k+q)xG_{WW}^{ij}(x,k)$$
(2)

where

$$xG_{WW}^{ij}(x,k) = \frac{1}{2}xG^{(1)}(x,k)\delta^{ij} - \frac{1}{2}(\delta^{ij} - \frac{2k^ik^j}{k^2})xh^{(1)}(x,k)$$
(3)

Ratio of entropies for full result

NC STATE UNIVERSITY

PP collision data from LHC

ArXiv.1904.11974, by Zhoudunming Tu, Dmitri E. Kharzeev, Thomas Ullrich

NC STATE UNIVERSITY