

eHIJING: an event generator for jet tomography at the EIC

EIC UG Meetting Early Career Workshop, July 29-30, 2021 (online)

Weiyao Ke^{1,2} Yayun He³, Xin-Nian Wang^{2,4}, Hongxi Xing³, Yuanyuan Zhang⁴

¹University of California, Berkeley

- ²Lawrence Berkeley National Laboratory
- ³South China Normal University
- ⁴Central China Normal University

This work is funded by NSF Grant OAC-2004571 under the X-SCAPE Collaboration, and by the UCB-CCNU Collaboration Grant

e-A: EM probe of hadron/nuclei, also a strong probe through final-state interactions.

- A clean environment to study energy loss & momentum broadening of fast partons.
- Sensitive to color opacity of cold nuclear matter $(\hat{q}(x, Q^2)) \leftrightarrow$ gluon d.o.f. of nuclei.

Event generator: complimentary to first-principle method. Direct study of the multi-particle final state.

Electron-Heavy-Ion Jet Interaction Generator (eHIJING)

HIJING (Heavy-Ion Jet Interaction Generator) [X-N Wang,

M. Gyulassy Phys.Rev. D 44 3501 (1991)].

eHIJING (electron-Ion)

- Hard process.
- Multiple q-A, g-A interaction.
 - Focus on multiple collisions on different nucleons (enhanced by $A^{1/3}$).
- Medium-modified parton shower.
- A model for hadronization.

Multiple collisions involves the TMD gluon distribution $\Phi_g(x, \mathbf{k}_{\perp})$

Overview of the eHIJING design, phase I

A TMD & saturation-based multiple collision model

Multiple collision between hard parton and gluon with momentum $xp + \mathbf{k}_{\perp}$

 $\frac{d\sigma}{d\mathbf{k}_{\perp}^{2}} = \frac{4\pi^{2}C_{R}}{(2\pi)^{2}d_{A}} \frac{\alpha_{s}\phi_{g}(x,\mathbf{k}_{\perp})}{\mathbf{k}_{\perp}^{2}} [\text{Y-Y Zhang, G-Y Qin, X-N Wang PRD 100, 074031}]$ We use a simple form of ϕ_{g} [D Kharzeev, E Levin PLB 523 79-87] $\alpha_{5}\Phi_{G}(x,k_{\perp}^{2},Q_{5}^{2}) = N(1-x)^{n}x^{\lambda}/\max\{k_{\perp}^{2},Q_{5}^{2}\}$

• Φ_G saturates when $k_{\perp} < Q_s$. Q_s is determined self-consistently [Y-Y Zhang and X-N Wang, 2104.04520]

$$Q_{s}^{2}(x, Q^{2}; T_{A}) = \frac{4\pi^{2}C_{A}}{d_{A}}T_{A}\int_{\mu}^{\frac{Q^{2}}{x}}\frac{d^{2}k_{\perp}}{(2\pi)^{2}}\alpha_{s}\phi_{g}(x\frac{k_{\perp}^{2}}{Q^{2}}, k_{\perp}^{2}; Q_{s}^{2})$$

A TMD & saturation-based multiple collision model

Multiple collision between hard parton and gluon with momentum $xp + \mathbf{k}_{\perp}$

 $\frac{d\sigma}{dk_{\perp}^{2}} = \frac{4\pi^{2}C_{R}}{(2\pi)^{2}d_{A}} \frac{\alpha_{s}\phi_{g}(x, \mathbf{k}_{\perp})}{\mathbf{k}_{\perp}^{2}} [\text{Y-Y Zhang, G-Y Qin, X-N Wang PRD 100, 074031}]$ $\frac{d\sigma}{dk_{\perp}^{2}} = \frac{4\pi^{2}C_{R}}{(2\pi)^{2}d_{A}} \frac{\alpha_{s}\phi_{g}(x, \mathbf{k}_{\perp})}{\mathbf{k}_{\perp}^{2}} [\text{Y-Y Zhang, G-Y Qin, X-N Wang PRD 100, 074031}]$ $\frac{\mu}{\mu} = \frac{\mu}{\mu} \quad \text{We use a simple form of } \phi_{g} [\text{D Kharzeev, E Levin PLB 523 79-87}]$ $\alpha_{s}\Phi_{G}(x, k_{\perp}^{2}, Q_{s}^{2}) = N(1-x)^{n}x^{\lambda}/\max\{k_{\perp}^{2}, Q_{s}^{2}\}$

• Such procedure also fix the jet transport parameter

$$\hat{q}_{R} = \frac{d\langle \Delta p_{\perp,R}^{2} \rangle}{dL} = \frac{C_{R}}{C_{A}} \frac{Q_{s}^{2}}{L}$$

Collisional induced bremmsstrahlung in p_T -ordered parton shower ($l_\perp > Q_s$)

Vacuum emission + 1st-order medium correction.

$$\frac{dP}{dzdl_{\perp}^2} = \frac{\alpha_{\rm s}(l_{\perp}^2)}{2\pi} \frac{P_0(z)}{l_{\perp}^2} \left[1 + \Delta_1\right]$$

1. Higher-twist expansion ($l_{\perp} \gg k_{\perp}, z \ll$ 1, $x_g \ll$ 1) [X-N Wang and X Guo]

2. Generalized higher-twist: $z \ll$ 1, $x_g \ll$ 1, no hierarchy for l_{\perp}, k_{\perp} [Y-Y Zhang and X-N Wang]

$$\Delta_{1}^{\text{Gen}} = \int_{0}^{L} dt \int \frac{d^{2}\mathbf{k}_{\perp}}{\mathbf{k}_{\perp}^{2}} \alpha_{s} \frac{C_{A}\rho(t)\phi_{g}(x_{g},\mathbf{k}_{\perp}^{2})}{2d_{A}} \frac{2\mathbf{k}_{\perp}\cdot\mathbf{l}_{\perp}}{(\mathbf{l}_{\perp}-\mathbf{k}_{\perp})^{2}} \left[1-\cos(t/\tau_{f})\right], \quad \tau_{f} = \frac{2zE}{(\mathbf{l}_{\perp}-\mathbf{k}_{\perp})^{2}}$$

Both methods enhance small- τ_f gluons ($\Delta_1 \sim Q_s^2/l_\perp^2 \propto A^{1/3}/l_\perp^2$) in parton shower and cause energy loss to leading parton.

Medium-modified fragmentation ($l_{\perp} < Q_s$)

• We consider p_T -ordered shower break down when $l_{\perp} < Q_s$. Instead, one samples pure medium-induced radiations [N-B Chang, W-T Deng, and X-N Wang PRC 89, 034911 (2014)]. Further, we sample multiple radiations ordered in formation-time

- Projectile: 27.6 GeV e^{\pm} Fixed targets: d, ⁴He, ²⁰Ne, ⁸⁴Kr, ¹³⁹Xe.
- Typical $Q^2 \sim 2 \text{ GeV}^2$ and $x = O(0.1 \sim 1)$. $l_T^2 < z(1-z)Q^2 \sim Q_s^2 \rightarrow \text{help to tune the modified hadronization model.}$

z_h and p_T -dependent nuclear modification factor

[[]HERMES, Nuclear Physics B 780, 24 (2007)]

- Nuclear modification $R_A = (N_h(\nu, Q^2; z_h, p_t)/N_\gamma)_{eA} / (N_h(\nu, Q^2; z_h, p_t)/N_\gamma)_{ed}$.
- \cdot HT (red) & generalized HT (blue). Bands: $\langle \hat{q}_q \rangle_{
 m eff}$ varies from 0.01 to 0.04 GeV²/fm.
- Consistent with the A-dependence of data from A = 4 to A = 139.

eHIJING

- Multiple parton-nucleus scattering from TMD gluon distribution.
- Medium-modified parton shower from higher-twist calculation.
- A model for medium-modified fragmentation process.
- Application to HERMES data $R_A(\nu, Q^2, z, p_t)$, and test the A-dependence of medium-modified hadronization.

Prospects

- Higher-twist beyond soft & static limit + k_T -dependent quark PDF [Y-Y Zhang and X-N Wang]
- Hadronic dynamics of the remnant.
- Use *e-p* event generator beyond LO (Sherpa).

Questions?

Projectile: 27.6 GeV e^{\pm} Fixed targets: d, ⁴He, ²⁰Ne, ⁸⁴Kr, ¹³⁹Xe.

z> 0.2, Q> 1 GeV, W> 2 GeV, $\nu>$ 6 GeV, y< 0.85

- $Q^2 = -q^2 = -(k k')^2$: virtuality of the exchange photon (γ).
- $\nu = E E'$: γ energy.
- $z = E_h/\nu$: energy fraction of hadron relative to γ .
- + p_{T} : transverse momentum of hadron relative to $\gamma.$
- $W = \sqrt{(p_{\gamma} + p_N)^2}$: γ -N center-of-mass energy.
- $y = \nu/E$: inelasticity.
- Typical $Q^2 \sim 2 \text{ GeV}^2$ and $x = O(0.1 \sim 1)$.
- $l_{\perp}^2 < z(1-z)Q^2 \sim Q_s^2 \rightarrow$ the HERMES data help to tune the modified hadronization model.

Backup slides: π and K from SIDIS in e-d

• Change of default Pythia8 fragmentation parameters $M_{\rm stop}$ (cut-off invariant mass of string breaking) to better fit pion and kaon measurement in the *e-d* collisions.

ν -dependent modification

Q²-dependent modification

