Color Transparency & Hadronization Studies with the Deuteron

Misak Sargsian & Werner Boeglin Florida International University, Miami

Future of Color Transparency and Hadronization Studies at Jlab & Beyond Online June 7–8, 2021

Two components of Color Transparency

(1) Formation of small size color neutral configurations (PLC)

- Feynman Mechanism
- Q2 are not large enough for PLC formation

(2) Evolution (Expansion) of PLCs to Normal Hadrons

- Rate of expansion how fast, instantaneous ?

CT Observables

- Diminished Interaction of PLC in the Nuclear Environment
- (current) Diminished absorption of PLC in the nuclear medium
- (new) Diminished cross section dominated by PLC-Nucleon Rescattering
- Reaction Processes Studied so Far Focused on Observing Diminished Absorption with Increase of Q2(current)
- $A(e,e'\rho)X$, $A(e,e'\pi)X$, $A(e,e'\rho)X$
- Problem is in dealing with nuclei A>4
- Suggestion is to study Diminished Cross Section (new)
- In d(e,e'p)n reaction dominated by Final State Interaction
- Advantage is in dealing with deuteron

Frankfurt, Greenberg, Miller, MS, Strikman PLB1996, Z.Phys A 1995

CT Subprocesses

Quasi-Elastic Exclusive Processes

- (current) $ep \rightarrow ep$, $eN \rightarrow epN$, $ep \rightarrow e\pi N$

- (new) Deep Inelastic eN-> eX

W. Cosyn, & MS IJMPE 2017 & Phys. Rev. C 2011

- (new) Deep Inelastic eN-> e, meson,X,.. hadronization

Theory of Deuteron Electro-disintegration at large Q2

Considering a reaction

 $e + d \rightarrow e' + p + n$

In knock-out kinematics:

One of the nucleon (p) takes almost all the transferred momentum and the other is recoil

"Modern Studies of the Deuteron" W. Boeglin, & MS IJMPE 2015

In high momentum transfer limit: $Q^2 > 1-2 GeV^2$

MS, Phys. Rev C 2010

Generalized Eikonal Approximation at large Q2, 1997-2010

Theory of High Energy eA Scattering:

High Energy Approximations: $ert ec q ert = q_3 \sim p_{f3} \gg p \sim M_N$ $Q^2 \geq few \; {
m GeV^2}$ Both for QE/DIS

- Emergence of the small parameter

 $\frac{q_{-}}{q_{+}} = \frac{q_{0} - q_{3}}{q_{0} + q_{3}} \ll 1 \quad \mathcal{O}(\frac{q_{-}}{q_{+}})$ $\frac{p_{f-}}{p_{f+}} = \frac{E_{f} - p_{f3}}{E_{f} + p_{f3}} \ll 1 \quad \mathcal{O}(\frac{p_{f-}}{p_{f+}})$

Emergence of "effective" theory

Effective Feynman Diagrammatic Rules

M.S. IJMS 2001

$$\Psi_d^{s_d}(s_1, p_1, s_2, p_2) = -\frac{\bar{u}(p_1, s_1)\bar{u}(p_2, s_2)\Gamma_{DNN}^{s_d}\chi_{s_d}}{(p_1^2 - m^2)\sqrt{2}\sqrt{(2\pi)^3(p_2^2 + m^2)^{\frac{1}{2}}}}$$

In high momentum transfer limit: $Q^2 > 1-2 \text{ GeV}^2$

MS, Phys. Rev C 2010

 $(p_d - p'_r + q)^2 - m^2 + i\epsilon = 2|\mathbf{q}|(p'_{r,z} - p_{r,z} + \Delta + i\epsilon),$

$$\Delta = \frac{q_0}{|\mathbf{q}|} (E_r - E_r') + \frac{M_d}{|\mathbf{q}|} (E_r - E_r') + \frac{p_r'^2 - m^2}{2|\mathbf{q}|}.$$

 $\frac{1}{(p'_{r,z} - p_{r,z} + \Delta + i\epsilon)} = -i\pi\delta(p'_{r,z} - (p_{r,z} - \Delta)) + \mathcal{P}\int \frac{1}{p'_{r,z} - (p_{r,z} - \Delta)}$

$$\langle s_f, s_r \mid A_0^{\mu} \mid s_d \rangle = \sqrt{2}\sqrt{(2\pi)^3 2E_r} \sum_{s_i} J_N^{\mu}(s_f, p_f; s_i, p_i) \Psi_d^{s_d}(s_i, p_i, s_r, p_r)$$

$$\begin{split} \langle s_{f}, s_{r} \mid A_{1}^{\mu} \mid s_{d} \rangle &= \frac{i\sqrt{2}(2\pi)^{\frac{3}{2}}}{4} \sum_{s_{f}', s_{r}', s_{i}} \int \frac{d^{2}p_{r}'}{(2\pi)^{2}} \frac{\sqrt{2\tilde{E}_{r}'\sqrt{s(s-4m^{2})}}}{2\tilde{E}_{r}'|q|} \times \\ \langle p_{f}, s_{f}; p_{r}, s_{r} \mid f^{NN,on}(t,s) \mid \tilde{p}_{r}', s_{r}'; \tilde{p}_{f}', s_{f}' \rangle \cdot J_{N}^{\mu}(s_{f}', p_{f}'; s_{i}, \tilde{p}_{i}') \cdot \Psi_{d}^{s_{d}}(s_{i}, \tilde{p}_{i}', s_{r}', \tilde{p}_{r}') \\ &- \frac{\sqrt{2}(2\pi)^{\frac{3}{2}}}{2} \sum_{s_{f}', s_{r}', s_{i}} \mathcal{P} \int \frac{dp_{r,z}'}{2\pi} \int \frac{d^{2}p_{r}'}{(2\pi)^{2}} \frac{\sqrt{2E_{r}'}\sqrt{s(s-4m^{2})}}{2E_{r}'|\mathbf{q}|} \times \\ &\frac{\langle p_{f}, s_{f}; p_{r}, s_{r} \mid f^{NN,off}(t,s) \mid p_{r}', s_{r}'; p_{f}', s_{f}' \rangle}{p_{r,z}' - \tilde{p}_{r,z}'} J_{N}^{\mu}(s_{f}', p_{f}'; s_{i}, p_{i}') \cdot \Psi_{d}^{s_{d}}(s_{i}, p_{i}', s_{r}', p_{r}') \end{split}$$

Some Results: $e + d \rightarrow e' + p + n$

Frankfurt, M.S., Strikman, PRC 1997

 $A^{\nu \dagger} A^{\mu} = A_0^{\nu \dagger} A_0^{\mu} - A_0^{\mu \dagger} Im A_1^{\mu} - Im A_1^{\mu \dagger} A_0^{\mu} + A_1^{\nu \dagger} A_1^{\mu}$

Saturday, February 25, 12

Some Results: $e + d \rightarrow e' + p + n$

Probing Short Distance Structure of the Deuteron

Impossibility to Probe Deuteron at Small Distances at low Q²

Probing Deuteron at Small Distances at large Q²

M.Sargsian, PRC 2010

Some Results: $e + d \rightarrow e' + p + n$

Probing Rescattering: Double Scattering as a tool to study Color Transparency

Larger momentum of spectator nucleon chooses
 (1) shorter distances between production and rescattering vertices

Observable

(2) $\downarrow R = \frac{\sigma(p_r = 400 MeV/c)}{\sigma(p_r = 200 MeV/c)}$

Greenberg, Frankfurt, Miller, MS, Strikman, Z.Phys A 1995

$$R = \frac{\sigma(p_r = 400 M eV/c)}{\sigma(p_r = 200 M eV/c)}$$

 $e + d \rightarrow e' + p + n$ CT in Double Scattering

Experimental Status of Double Scattering $e+d \rightarrow e'+p+n$ r_{b} r_{b

K. Egiyan et al PRL 2008

M.Sargsian, PRC 2010

W. Boeglin et al PRL 2011

Rate Estimates

- Electrons: SHMS
- Protons: HMS
- Target: 10cm liquid D
- Beam current: 50µA
- Rates estimated with SIMC using PWIA including radiation
- Standard acceptance cuts
- Electrons:

• Protons:
$$\theta_{tar} \le \pm 50 \ \phi_{tar} \le \pm 0.25 \ -8 \le \delta \le 4.$$

 $\theta_{tar} \le \pm 60 \ \phi_{tar} \le \pm 0.25 - 10 \le \delta \le 10.$

						Events/Hou	Precisio	Number of	Beam
Q ² min	Q ² max	P _m min	P _m max	θ_{na} min	θ_{na} max	r	n (%)	Events	Time (h)
3.75	4.25	0.15	0.25	55	85	2571.9	5	400	0.2
3.75	4.25	0.35	0.45	55	85	73.8	5	400	5.4
4.75	5.25	0.15	0.25	55	85	997.0	5	400	0.4
4.75	5.25	0.35	0.45	55	85	25.6	5	400	15.6
5.75	6.25	0.15	0.25	55	85	389.8	5	400	1.0
5.75	6.25	0.35	0.45	55	85	9.5	5	400	42.0
6.75	7.25	0.15	0.25	55	85	152.0	5	400	2.6
6.75	7.25	0.35	0.45	55	85	3.7	6	278	75.0
7.75	8.25	0.15	0.25	55	85	61.9	6	278	4.5
7.75	8.25	0.35	0.45	55	85	1.6	7	204	129.4
8.75	9.25	0.15	0.25	55	85	27.2	7	204	7.5
8.75	9.25	0.35	0.45	55	85	0.7	7	204	291.3
9.5	10.5	0.15	0.25	55	85	23.1	10	100	4.3
9.5	10.5	0.35	0.45	55	85	0.6	10	100	156.6
Total (hours)									735.8
Total (days)									30.7

Extension to DIS:

Christian Weise, Talk Wim Cosyn, Talk

Distinguish Between PLC and Feynman mechanisms

Extension to DIS:

 $e + d \rightarrow e' + p_s + X$

W.Cosyn & M.Sargsian, PRC 2011

W. Boeglin et al PRL 2011

Hadronization Studies in

$$e + d \rightarrow e' + X + p_r$$
 DIS:

 $f_{NX} = \sigma_{tot}(Q^2)(i + \alpha(Q^2))e^{\beta(Q^2)t}$

Some Outlook

- Deuteron can present as a micro-detector for probing structure of produced baryons through the rescattering off the spectator nucleon
- By selecting larger momentum of spectator one can control distances at which PLC evolves (if it is produced)
- Tagged processes with the Deuteron, may potentially present a new venue for CT and Hadronization processes.
- In addition to $e + d \rightarrow e' + X + p_r$ one can also consider $e + d \rightarrow e' + X + meson + N_r$ to probe the hadronization of meson through meson-N_r rescattering