# Nuclear Transparency Measurements in large-angle quasi-elastic A(p,2p) scattering at Brookhaven National Lab

#### I. Mardor

#### Soreq Nuclear Research Center and Tel Aviv University

The Future of Color Transparency and Hadronization Studies at Jefferson Lab and Beyond

June 8<sup>th</sup>, 2021

# Talk outline

- Nuclear Transparency (NT) via A(p,2p)
- The BNL A(p,2p) experiments
  - E834 (1980's)
    - Incident proton momentum up to 12 GeV/c
    - A = Li, C, Al, Cu, Pb
  - E850 (1990's)
    - Incident proton momentum 5.9 14.4 GeV/c
    - A = D, C
- Experimental results
- Possible physics interpretations
- Outlook

Presentation is based mainly on: J. Aclander et al., Phys. Rev. C 70, 015208 (2004)

# Nuclear Transparency for A(p,2p) (1/3)

- **NT Definition:** The survival probability for protons to enter and exit a nucleus
- In standard Glauber models: NT is independent of p incoming momentum
- Complicated by nucleon momentum and binding energy distributions
- In practice: Implicitly integrate over binding energy distributions and consider only nuclear momentum distributions



# Nuclear Transparency for A(p,2p) (2/3)

- Assumption: pp scattering in nucleus can be factorized from initial and final state interactions (ISI and FSI)
- Nee to take into account: Energymomentum behavior of the elementary pp differential cross section
- **Recall**: pp cross section at large angles depends very strongly on energy
- Procedure:
  - Select protons with a narrow range of Fermi longitudinal momentum
  - Correct quasi-elastic distributions with the known differential pp cross section



# Nuclear Transparency for A(p,2p) (3/3)

- Measurements were performed near 90° in the pp CM
- Elastic scattering at such large angles is supposed to single out Point Like Configurations (PLC) of the protons
- When in PLC, quark colors are assumed to 'overlap', rendering the proton color transparent, significantly decreasing ISI and FSI
- As incident momentum increases, PLC is assumed to become more dominant
- Thus, an increase of T<sub>pp</sub> (90° CM) as a function of incident momentum may be a signature of color transparency



#### BNL Experiment E834 (1980's)

- Measure directions of both final state particles, momentum of only one track
- Set up for 2-body exclusive ~90°<sub>c.m.</sub> reactions
- Direction and momentum of one particle measured by drift wire chambers before (DWC3,4) and after (DWC1,2) a magnet
- Proportional wire chambers (PWC3-5) measured direction of second particle
- Cernenkov counters identified  $\pi$  and k, so p could be selected
- Level I trigger TH1,2 scintillation hodoscopes NUCLEAR TARGETS
- Level II trigger DWC1,2 momentum trigger



#### BNL Experiment E834 (1980's)

- Veto reject events with additional charged and π<sup>0</sup> tracks (lead-scintillator sandwiches)
- 4 Identical targets Li, C, Al, Cu or Pb
- # of bound protons the 4 targets was ~5 times the # of free protons in the 2 CH<sub>2</sub> targets
- 4 targets were interchanged regularly
- Vertex identification of targets via tracking was unambiguous



### E834 Kinematics

Missing energy and momentum

 $\boldsymbol{\epsilon}_m = \boldsymbol{E}_3 + \boldsymbol{E}_4 - \boldsymbol{E}_1 - \boldsymbol{m}_p,$ 

 $\vec{P}_m = \vec{P}_3 + \vec{P}_4 - \vec{P}_1.$ 

- $\hat{z}$  incident beam direction
- $\hat{x}$  in plane containing  $\vec{P}_1$  and  $\vec{P}_3$
- $\hat{y}$  perpendicular to  $\hat{x}$
- $\vec{P}_4$  was not measured. Assumed  $\varepsilon_m = 0$  and then extracted  $E_4$  from energy conservation, and from it  $\vec{P}_4$  and  $\vec{P}_m$
- ~0.5% effect on nuclear momenta
- Clear extraction of hydrogen elastic signal in  $P_{mz}$ , determined by the lab polar angles of  $\vec{P}_3$  and  $\vec{P}_4$



### E834 Kinematics

- $P_{my}$  is mainly determined by the out-of-plane azimuthal angle. Only weakly dependent on magnitudes of  $P_3$  and  $P_4$ 
  - $\Delta P_{my} = \pm 30 \ MeV/c$
- $P_{mx}$  mainly depends on difference of  $P_3$  and  $P_4$  magnitudes
  - $\Delta P_{mx} = \pm 100 \ MeV/c$
- QE signal is after background subtraction, and the cuts:

 $|P_{mx}| < 0.25 \text{ GeV}/c, |P_{my}| < 0.25 \text{ GeV}/c,$ 

$$0.9 < \alpha_0 < 1.2$$
.

• Where:

$$\alpha_0 \equiv 1 - \frac{2\beta \cos[(\theta_3 - \theta_4)/2] \cos[(\theta_3 + \theta_4)/2] - p_{1z}}{m_p} ; \ \beta \equiv \sqrt{\left(\frac{E_1 + m_p}{2}\right)^2 - m_p^2}$$

Primary systematic error – 20±5% background subtraction uncertainty



$$\frac{N(p_a,p_b)}{N'_{\rm H}} = \int \int_{p_a}^{p_b} dp_z \left[ \int \int dp_x \, dp_y \, F(\mathbf{p}) A(\mathbf{p}) \frac{(d\sigma/dt)(s)}{(d\sigma/dt)(s_0)} \right]$$

- (T: nuclear transparency
- $N(p_a, p_b)$ : # of QE events with  $p_a < p_z < p_b$
- $N'_{\rm H}$ : # of H elastic events, times the ratio of target nuclear protons to hydrogen protons (5.1 for Al)
- *F*(**p**) : Normalized Fermi momentum distribution
- A (p) : Acceptance, normalized to H acceptance
- $\boldsymbol{S}_0$ : nominal c.m. energy squared for hydrogen
- S : c.m energy squared of the QE event, taking into account the struck proton 4-momentum (m<sub>p</sub>, p<sub>x</sub>, p<sub>y</sub>, p<sub>z</sub>)
- S dependence of dσ/dt on a proton in the nucleus is assumed to be the same as on a free proton

|       | Al r | esu | lts           | $P_{eff} \approx P_0 [1 - (p_a + p_b)/2m_p]$ |                                 |                 |  |
|-------|------|-----|---------------|----------------------------------------------|---------------------------------|-----------------|--|
| $P_0$ | pa   | рь  | $P_{\rm eff}$ | $N(p_a,p_b)$                                 | $\int_{P_a}^{P_b} dp_z [\dots]$ | Т               |  |
| 6     | -0.2 | 0.0 | 6.6           | 322                                          | 0.17                            | $0.22 \pm 0.04$ |  |
| 6     | 0.0  | 0.1 | 5.7           | 721                                          | 0.31                            | $0.25 \pm 0.03$ |  |
| 6     | 0.1  | 0.2 | 5.0           | 800                                          | 0.52                            | $0.18 \pm 0.03$ |  |
| 6     | 0.2  | 0.3 | 4.4           | 400                                          | 0.29                            | $0.15 \pm 0.03$ |  |
| 10    | -0.2 | 0.0 | 11.0          | 158                                          | 0.22                            | $0.25 \pm 0.06$ |  |
| 10    | 0.0  | 0.1 | 9.5           | 384                                          | 0.25                            | $0.48 \pm 0.05$ |  |
| 10    | 0.1  | 0.2 | 8.4           | 481                                          | 0.45                            | $0.32 \pm 0.04$ |  |
| 10    | 0.2  | 0.3 | 7.3           | 450                                          | 0.49                            | $0.28 \pm 0.06$ |  |
| 12    | -0.2 | 0.0 | 13.2          | 25                                           | 0.17                            | $0.12 \pm 0.04$ |  |
| 12    | 0.0  | 0.1 | 11.4          | 65                                           | 0.29                            | $0.20 \pm 0.04$ |  |
| 12    | 0.1  | 0.2 | 10.2          | 100                                          | 0.35                            | $0.24 \pm 0.08$ |  |
| 12    | 0.2  | 0.3 | 8.8           | 140                                          | 0.26                            | $0.46 \pm 0.07$ |  |

A. Carroll et al., Phys. Rev. Lett. 61, 1698 (1988)

E834 nuclear transparency  $\frac{N(p_a,p_b)}{N'_{LI}} = T \int_{p_a}^{p_b} dp_z \left| \int \int dp_x \, dp_y F(\mathbf{p}) A(\mathbf{p}) \frac{(d\sigma/dt)(s)}{(d\sigma/dt)(s_0)} \right|$ 

- (T): nuclear transparency
- $N(p_a, p_b)$ : # of QE events with  $p_a < p_z < p_b$
- $N'_{\rm H}$ : # of H elastic events, times the ratio of target nuclear protons to hydrogen protons (5.1 for Al)
- *F*(**p**) : Normalized Fermi momentum distribution
- A (p) : Acceptance, normalized to H acceptance
- $\boldsymbol{s}_0$ : nominal c.m. energy squared for hydrogen
- S : c.m energy squared of the QE event, taking into account the struck proton 4-momentum (m<sub>p</sub>, p<sub>x</sub>, p<sub>y</sub>, p<sub>z</sub>)
- S dependence of do/dt on a proton in the nucleus is assumed to be the same as on a free proton



#### E834 nuclear transparency - A and particle dependence

- A dependence yields effective cross sections of p in nuclei
- ~18 mb at 5.9 and 12 GeV/c,
  ~12 mb at 10 GeV/c
- The absorption of protons for large Q<sup>2</sup> QE events is less than that predicted by free protonnucleon scattering
- T[A(π<sup>+</sup>,π<sup>+</sup>p)] is ~1.5 times higher than T[A(p,2p)], with large uncertainty and some variation with A



# NT energy dependence due to multiple scattering?



- Wrote explicit NT expression taking into account re-scattering of protons in the nucleus, before reaching detectors
- Re-scattering will alter s and t, and might affect
  NT due to strong s dependence of dσ/dt(pp→pp)
- Performed MC calculation with up to 4 re-scatterings for each proton
- Applied cuts of Carroll et al. and plotted NT as a function of incoming momentum



### BNL Experiment E850 (1990's)

- The E850 experiment allowed full and symmetrical tracking with momentum reconstruction of **both** final state particles
- The E850 measurement addressed the concerns about the background subtraction in the determination of the quasielastic signal in the E834 experiment

# E850: EVA – Exclusive Variable Apparatus (1/2)

- BH: Beam Hodoscope
- C1-C4: 4-layer cylindrical strawtube drift-chamber arrays.
   3D Tracking and transverse momentum measurement
- H1-H2: Cylindrical scintillation counter arrays. Events triggers
- C, CH<sub>2</sub> and CD<sub>2</sub> targets inside C1
- Solenoid: SC, 0.8 Tesla
- Pole piece: Minimize transverse fringe fields, beam dump
- Protons identified by differential Cerenkov counters



# E850: EVA – Exclusive Variable Apparatus (2/2)

- Transverse cut of EVA
- Trigger based on high transverse momentum (V)
- Rejection of low transverse momentum events (X)
- Level I trigger (H1, H2) 75 nsec
- Level II trigger (C2, C3, C4) 1  $\mu$ sec
- Higher level triggers micro-processor based checks for exactly 2 tracks, roughly co-planar
- Trigger rate < 100 Hz for incident beams of up to 10<sup>8</sup> Hz (10<sup>7</sup> interactions per spill)



### E850 Kinematics

• Missing energy, momentum and mass

 $\epsilon_{m} = E_{3} + E_{4} - E_{1} - m_{p},$  $\vec{P}_{m} = \vec{P}_{3} + \vec{P}_{4} - \vec{P}_{1},$  $m_{M}^{2} = \epsilon_{m}^{2} - \vec{P}_{m}^{2}.$ 

Ž

- $\hat{z}$  incident beam direction
- $\hat{x}$  in plane containing  $\vec{P}_1$  and  $\vec{P}_3$
- $\hat{y}$  perpendicular to  $\hat{x}$
- $P_{my}$  : out-of-plane azimuthal angle
- $P_{mx}$ : difference of  $P_3$  and  $P_4$  magnitudes

$$\alpha \equiv A \frac{(E_m - P_{mz})}{M_A} \simeq 1 - \frac{P_{mz} - \epsilon_m}{m_p} \simeq 1 - \frac{P_{mz}}{m_p}$$
$$\alpha_0 \equiv 1 - \frac{2\beta \cos[(\theta_3 - \theta_4)/2] \cos[(\theta_3 + \theta_4)/2] - p_{1z}}{m_p}$$

Selected H events from the CH<sub>2</sub> targets for  $P_1 = 5.9$  GeV/c 300  $\sigma$ =35 MeV/c σ=150 MeV/c 1000 250 800 200 600 150 400 100 20050 0 -0.5 -0.25 .0.25 0.5 0.25A Pmr [GeV/c] P<sub>my</sub> [GeV/c]  $\sigma = 0.025$ 1000  $|\alpha - \alpha_0| < 0.005$ Eventa 800 600 400 Ś 200 0.8 0.9 1.0 0.7 1.1  $\boldsymbol{\alpha}_{0}$ 17

# E850 target cuts and identification

- Reconstructed vertices enabled to remove events not originating from targets
- Longitudinal vertex location enables to identify the event target
- Limited longitudinal vertex resolution caused
  - Loss of many ambiguous events
  - Possible mis-identification of event target





I. Mardor, Ph.D. thesis (1998)

18

# E850 QE signal and background

- Background events have (too) large Fermi momentum and/or extra track(s)
- QE peak in missing energy plot observed only with exactly 2 tracks and reasonable Fermi momentum
- Worked for 5.9 & 7.5 GeV/c. At higher energy  $E_m$  resolution was too broad
- A method that worked for all relevant energies – used density of measured events per unit 4D missing-momentum space:

$$d\epsilon_m d^3 \vec{P}_m \to d^2 \vec{P}_{mT} \, d\alpha d(m_M^2)$$

• Elastic H peak:  $m_M^2 = 0$ ,  $P_{mT}^2 = 0$ ,  $\alpha = 1$ 

Selected (0.95 <  $\alpha_0$  < 1.05) C target events P<sub>1</sub> = 5.9 GeV/c



19

# E850 QE signal and background

• Used radial projection of the 4D missingmomentum variable to extract signal from background for QE and elastic events:

$$\mathbf{P}^4 \equiv P_{mT}^4 + m_M^4$$

- Obtained clear signals over background for all measured incoming momenta
- Smooth background at  $0.15 < \mathbf{P}^4 < 0.35 \text{ (GeV}^4/c^4)$ extended to QE peak at  $\mathbf{P}^4 < 0.1 \text{ (GeV}^4/c^4)$
- Cuts exactly 2 nearly-coplanar tracks, and:

$$|P_{mx}| < 0.5 \text{ GeV/}c, |P_{my}| < 0.3 \text{ GeV/}c,$$
  
 $|1 - \alpha_0| < 0.05$ 



# E850 Nuclear transparency

 $\frac{d\sigma}{dt}_{pp}(s_0)$ 

 $P_1(\text{GeV}/$ 

5.9

8.0

9.1 11.6

7.5

$$T_{\rm CH} = T_{pp} \int_{\alpha_1}^{\alpha_2} d\alpha \int d^2 \vec{P}_{mT} n(\alpha, \vec{P}_{mT}) \frac{\frac{d\sigma}{dt}_{pp}(s(\alpha))}{\frac{d\sigma}{dt}_{pp}(s_0)}$$

$$T_{\rm CH} = \frac{1}{3} \frac{R_{\rm C}}{R_{\rm CH_2} - R_{\rm C}} \qquad \begin{array}{c} R_x \\ e \end{array}$$

#### : event rate in ach nucleus

- $T_{pp}$  is extracted from  $T_{CH}$  by taking into account the Fermi momentum distribution and the strong longitudinal momentum dependence of  $d\sigma/dt(pp)$
- $T_{\rm DH} = \frac{R_{\rm CD_2} R_{\rm C}}{R_{\rm CH_2} R_{\rm C}}$ • For deuterium: 14.4 9.1 11.6
- $Tpp(D) \approx T_{DH}$ , because the kinematical cuts 14.4 cover the entire deuteron wave function 5.9
- Consistency with 1 provides a consistency 7.5 check on nuclear transparency normalization 5.9

| /c)                                                 | $\theta_{\rm c.m.}(\rm deg)$ | $\alpha_0$  | $P_{eff}({\rm GeV}/c)$ | $T_{\rm CH}$      | $\int_{\alpha_1}^{\alpha_2}$ | $T_{pp}$          |  |  |  |  |
|-----------------------------------------------------|------------------------------|-------------|------------------------|-------------------|------------------------------|-------------------|--|--|--|--|
| E850 carbon data: Leksanov et al. (2001) [2]        |                              |             |                        |                   |                              |                   |  |  |  |  |
|                                                     | 86.2-90                      | 0.95 - 1.05 | 5.9                    | $0.071 \pm 0.012$ | 0.350                        | $0.20 \pm 0.03$   |  |  |  |  |
|                                                     | 87.0-90                      | 0.95-1.05   | 8.0                    | $0.120 \pm 0.018$ | 0.350                        | $0.34 {\pm} 0.05$ |  |  |  |  |
|                                                     | 86.8-90                      | 0.95 - 1.05 | 9.1                    | $0.164 \pm 0.038$ | 0.350                        | $0.47 {\pm} 0.11$ |  |  |  |  |
|                                                     | 85.8-90                      | 0.95 - 1.05 | 11.6                   | $0.079 \pm 0.021$ | 0.340                        | $0.23 \pm 0.06$   |  |  |  |  |
|                                                     | 86.3-90                      | 0.95 - 1.05 | 14.4                   | $0.033 \pm 0.024$ | 0.340                        | $0.10 {\pm} 0.07$ |  |  |  |  |
| E850 carbon data for $\alpha > 1$ [29]              |                              |             |                        |                   |                              |                   |  |  |  |  |
|                                                     | 86.8-90                      | 1.05 - 1.15 | 10.0                   | $0.059 \pm 0.015$ | 0.11                         | $0.53 {\pm} 0.15$ |  |  |  |  |
|                                                     | 85.8-90                      | 1.05 - 1.15 | 12.8                   | $0.016 \pm 0.007$ | 0.12                         | $0.14 {\pm} 0.07$ |  |  |  |  |
|                                                     | 86.3-90                      | 1.05 - 1.15 | 15.8                   | $0.007 \pm 0.007$ | 0.11                         | $0.06 {\pm} 0.07$ |  |  |  |  |
| E850 carbon results: Mardor et al. (1998) [1]       |                              |             |                        |                   |                              |                   |  |  |  |  |
|                                                     | 85.8-90                      | 0.95 - 1.05 | 5.9                    | $0.054 \pm 0.006$ | 0.350                        | $0.16 {\pm} 0.02$ |  |  |  |  |
|                                                     | 85.8-90                      | 0.95 - 1.05 | 7.5                    | $0.072 \pm 0.006$ | 0.350                        | $0.20 \pm 0.02$   |  |  |  |  |
| E850 deuterium results: Mardor et al. (1988) [1,28] |                              |             |                        |                   |                              |                   |  |  |  |  |
|                                                     | 85.5-90                      | 0.85 - 1.05 | 5.6                    |                   | ~1.0                         | $1.06 {\pm} 0.07$ |  |  |  |  |
|                                                     | 85.5-90                      | 0.85-1.05   | 7.1                    | _                 | ~1.0                         | $1.10 {\pm} 0.10$ |  |  |  |  |

# E850 Nuclear transparency 550 IN UCICC. $T_{\text{CH}} = T_{pp} \int_{\alpha_1}^{\alpha_2} d\alpha \int d^2 \vec{P}_{mT} n(\alpha, \vec{P}_{mT}) \frac{\frac{d\sigma}{dt}_{pp}(s(\alpha))}{\frac{d\sigma}{dt}_{pp}(s_0)} \qquad T_{\text{CH}} = \frac{1}{3} \frac{R_{\text{C}}}{R_{\text{CH}_2} - R_{\text{C}}}$

0.6

0.4

- $T_{pp}$  is extracted from  $T_{CH}$  by taking into account the Fermi momentum distribution and the strong longitudinal momentum dependence of  $d\sigma/dt(pp)$
- $T_{\rm DH} = \frac{R_{\rm CD_2} R_{\rm C}}{R_{\rm CH_2} R_{\rm C}}$ • For deuterium:
- $Tpp(D) \approx T_{DH}$ , because the kinematical cuts cover the entire deuteron wave function
- Consistency with 1 provides a consistency check on nuclear transparency normalization



(a)

Beam momentum [GeV/c]

### E834 + E850 Nuclear transparency results

- Used an updated parametrization for the Fermi momentum distributions
- Combine Al and C transparencies by multiplying the Al data by (27/12)<sup>1/3</sup>
- Solid line is the inverse of the ds/dt(pp) dependence around the s-10 trend.
   Normalization is adjusted to best fit the transparency data

$$\frac{d\sigma}{dt_{pp}}(\theta = 90^{\circ}_{\text{c.m.}}) = R(s)s^{-10}$$



# Possible interpretations for the BNL A(p,2p) results

- Probably not Color Transparency, because
  - Decrease in NT above 9.5 GeV/c
  - Recent (e,e'p) data up to Q<sup>2</sup> equivalent to outgoing proton momenta similar to BNL show no Color Transparency



D. Bhetuwal et al., Phys. Rev. Lett. 126, 082301 (2021)



# Possible interpretations for the BNL A(p,2p) results

- Perhaps 'nuclear filtering' of certain part(s) of the pp reaction amplitude
- Free pp cross section is a combination of the perturbative QCD "small" component and a "large" component (Ralston & Pire)
- Large component is filtered by the nucleus, so NT behaves like inverse of the pp cross section (s<sup>-10</sup> cancelled out)
- Large component may be:
  - Independent quark scattering (Landshoff)
  - Open-charm resonance (Brodsky & De Teramond)



### Outlook – possible extensions of NT experiments

- Increase A(p, 2p) incoming momentum to > 20 GeV/c will NT rise again, as anticipated by 1/R(s)?
- A-dependent studies of A(p,2p) in the 12 to 15 GeV/c range will the effective absorption cross section continue to fall after NT stops rising at 9.5 GeV/c?
- Singly or doubly polarized measurements will a relatively pure pQCD state be selected, and are spin dependent effects attenuated?
- Use of  $\pi$ , k and  $\overline{p}$  induced reactions how will different mechanisms and cross sections affect NT?
- **Production of resonances, such as**  $\rho$  **or**  $\Lambda$  Will the interference terms that generate asymmetries disappear for reactions that take place in the nucleus?
- Investigate FSI of light nuclei at special kinematics Will short distance between first and second hard scatter overcome PLC expansion and reveal CT?

#### Many thanks to all E834 and E850 Collaborators

