Hadronization and final-state interactions in nuclear breakup measurements

C. Weiss (JLab), Future of Color Transparency and Hadronization Studies, 7-8 Jun 2021

Produced hadrons

Formation time? Color transparency?

Nuclear breakup Initial-state configurations? Final-state interactions?

Tagged DIS on deuteron
 Applications and theory

Impulse approximation and final-state interactions

- Final-state interactions Hadron distributions in DIS final state Hadron formation FSI in tagged DIS $x \gtrsim 0.1$
- Extensions

Polarized tagged DIS

Exclusive processes

Breakup of nuclei A > 2

Tagged DIS: Applications

Tagged inclusive scattering (DIS) $e + d \rightarrow e' + X + p(n)$

Also exclusive processes, e.g. $e+d \rightarrow e'+M+p+n$

- Neutron structure extraction Tagged momenta $p \sim$ few 10 MeV Free neutron from on-shell extrapolation
- Nuclear interactions: EMC effect, SRCs Tagged momenta $p \sim$ few 100 MeV Configuration dependence of EMC effect
- [• Coherent phenomena in QCD at small x Nuclear shadowing in A = 2 system]

Basic idea: Use spectator momentum to control nuclear configuration during high-energy process

Tagged DIS: Theory

• Light-front quantization

Nuclear structure described at LF time $x^+ = x^0 + x^3$

Off-shellness of nucleon scattering process remains finite in high-energy limit, permits matching with on-shell nucleon amplitudes Frankfurt, Strikman 1980's

Deuteron LF wave function $_{x^+}\langle pn|d\rangle = \Psi(\alpha_p, \boldsymbol{p}_{pT})$

Low-energy nuclear structure \leftrightarrow non-relativistic theory

• Composite description

Impulse approximation IA: DIS final state and spectator nucleon evolve independently

Final-state interactions: Part of DIS final state interacts with spectator, transfers momentum

Use tagged momentum as variable to control nuclear binding, minimize/maximize FSI

Tagged DIS: Neutron structure extraction

- Nuclear binding: Motion, interactions
- Free neutron from on-shell extrapolation

Measure tagged structure function dependence on proton momentum \rightarrow neutron off-shellness $t - m^2 = -2|\mathbf{p}_{pT}^2| + t'_{\min}$

Extrapolate to on-shell point $t - m^2 \rightarrow 0$

Eliminates nuclear binding effects and FSI Sargsian, Strikman 2005

EIC simulations JLab LDRD 2014/15; Jentsch, Tu, CW 2021

• Extension to polarized DIS

Tagged proton momentum controls S/D ratio, effective neutron polarization Frankfurt, Strikman 1983; Cosyn, CW 2020

FSI: Final-state interactions

DIS final state can interact with spectator
 Changes momentum distributions in tagging
 No effect on total cross section – closure

Questions

- Hadrons produced in DIS on nucleon: Momentum/angle distributions, spectra, exp data?
- Hadron formation: Times/distances, dependence on kinematics?
- Interaction with spectator: Amplitudes, off-shell effects?

Answers depend on x and Q^2 of DIS process

[Similar questions in exclusive processes]

```
Need input from nuclear transparency measurements!
```

FSI: Tagged DIS at x $\gtrsim 0.1$

• Space-time picture in nuclear rest frame Strikman, CW, PRC97 (2018) 035209

DIS limit $\nu \gg$ hadronic mass scale, Q^2/ν fixed, large phase space for hadron production

• Nucleon DIS final state has two components

"Fast"	$E_h = O(\nu)$	hadrons formed outside nucleus interact weakly with spectators
"Slow"	$E_h = O(\mu_{ m had}) \sim 1 \; { m GeV}$	formed inside nucleus interacts with hadronic cross section dominant source of FSI ←

["current" and "target" fragmentation regions]

• Respects QCD factorization for target fragmentation Trentadue, Veneziano 1993; Collins 1997

FSI only modifies soft breakup of target, no long-range rapidity correlations

FSI: Hadron distributions from DIS

- Kinematic variables
 - $egin{aligned} &\zeta_h, oldsymbol{p}_{hT} & ext{hadron LC momentum} \end{aligned}$ Slow hadrons in rest frame have $\zeta_h \sim 1$ $&\zeta_h < 1-x & ext{kinematic limit} \end{aligned}$ $&\zeta_h/(1-x) pprox -x_{ ext{F}} & ext{relation to Feynman var} \end{aligned}$
- Momentum distribution in rest frame Constrained by LC momentum conservation

Cone opening in virtual photon direction q

h= nucleon: \pmb{p}_h always forward, grows for $x\rightarrow 1$

 $h = \mathsf{pion}: \ \boldsymbol{p}_h$ forward or backward

FSI: Hadron distributions from DIS

- Measurements of target fragmentation $(x_{\rm F} < 0)$ EMC μp 1986 x > 0.02: $x_{\rm F}$ distributions of $p, \bar{p}, \pi^{\pm}, K^{\pm}, \Lambda$ HERA ep 2009/2014 x < 0.01: $x_{\rm F}$ distributions of p, nCornell ep 1975 x > 0.1: Momentum distributions of p, π Neutrino DIS: FNAL-E-0031 1977, CERN-WA-021 1981
- JLab12 and EIC should measure target fragmentation Spin/flavor dependence? Kinematic dependences? Interesting nucleon structure physics + necessary input for nuclear FSI! Workshop "Target Fragmentation Physics with EIC," CFNS Stony Brook, 28-30 Sep 2020 [Webpage]. EIC Yellow Report arXiv:2103.05419

FSI: Strength and momentum dependence

 Quantum-mechanical description: Interference, absoprtion Strikman, CW, PRC97 (2018) 035209

• Momentum and angle dependence in rest frame

 $p_p < 300 \text{ MeV}$ IA \times FSI interference, absorptive, weak angular dependence

- $p_p > 300 \text{ MeV}$ $|\text{FSI}|^2$, refractive, strong angular dependence
- FSI vanishes at on-shell point $t m^2 \rightarrow 0$; extrapolation feasible

FSI: Open questions

• FSI in backward region

Present treatment includes only FSI from h = nucleons in DIS final state

FSI from pions?

• Subasymptotic regime of finite ν and Q^2

 \rightarrow JLab 6/12 GeV kinematics

Present treatment assumes DIS limit – large phase space, distinction between fast and slow part of final state

Connection with resonance region? Cosyn, Sargsian, Melnitchouk 2011– \rightarrow JLab BAND experiment

Extensions: Tagging with deuteron

• Tagged DIS with polarized deuteron

Tagging controls S/D wave ratio Frankfurt, Strikman 1983

Vector-polarized deuteron: Eliminate D-wave depolarization, neutron 100% polarized Cosyn, Weiss, PLB799 (2019) 135035; Phys.Rev.C 102 (2020) 065204

Tensor-polarized deuteron: Realize maximum tensor polarization [+1, -2]

Spin-dependent effects in FSI?

• Tagged DIS at $x \ll 0.1$

Study configuration dependence of nuclear shadowing

Diffractive DIS as new source of slow nucleons: Strong FSI, QM treatment Guzey, Strikman, CW; in progress

• Tagged exclusive processes

Meson production or DVCS on neutron

"Know" forward-going hadron: Simpler FSI calculations, test picture/models

Extensions: Tagging with nuclei $A\!>\!2$

• Potential applications

 $\mathsf{Isospin}\ \mathsf{dependence}\ \mathsf{neutron}\ \leftrightarrow\ \mathsf{proton}$

Universality of bound nucleon structure

 Simplest example: A-1 ground state recoil
 3He (e, e' d) X, including polarization Ciofi, Kaptari, Scopetta 99; Kaptari et al. 2014; Milner et al. 2018

Bound proton \leftrightarrow free proton structure

• Nuclear breakup much more complex than A=2

IA: Wave function overlap, large amplitude factors

FSI: Multiple trajectories

Requires new nuclear structure imput: Light-front spectral functions, decay functions, FSI Workshop "Polarized light ion physics with EIC", 5-9 Feb 2018, Ghent [Webpage]. Emerging collaboration with low-energy nuclear structure community

Summary

- Tagged DIS on deuteron permits control of nuclear configuration during high-energy process and differential treatment of nuclear effects
- Free neutron structure can be extracted model-independently using pole extrapolation, not affected by FSI
- Final-state interactions in tagged DIS at $x\gtrsim 0.1$

Space-time picture of hadron formation and interactions – fast and slow hadrons Need experimental data on target fragmentation in DIS, x_F distributions Interactions essentially quantum-mechanical – interference, absorption FSI effects are O(1) for at p(tagged) ~ few 100 MeV

Can we use tagged DIS to learn about hadronization?

- Extensions of tagging to A>2 require major theoretical development
- Exciting prospects for programs at JLab12, EIC, J-PARC

Supplementary material

Tagging: Neutron spin structure

- Nuclear binding: Neutron polarization?
 S + D waves, depolarization

 - Control neutron polarization

Measure tagged spin asymmetries

D-wave drops out at $p_{pT} = 0$: Pure S-wave, neutron 100% polarized

 $[|\boldsymbol{p}_{pT}| pprox$ 400 MeV: D-wave dominates]

- Free neutron spin structure On-shell extrapolation of asymmetry
- EIC simulations

Possible with int lumi \sim few 10 ${\rm fb}^{-1}$

FSI: Diffractive DIS at small x

- Diffractive scattering: Nucleon remains intact, recoils with $k \sim$ few 100 MeV (rest frame)
- Shadowing: QM interference of diffractive scattering on neutron or proton Observed in inclusive nuclear scattering
- Final-state interactions

Low-momentum pn system with S = 1, I = 0

 $pn\ {\rm breakup}\ {\rm state}\ {\rm must}\ {\rm be}\ {\rm orthogonal}\ {\rm to}\ d\ {\rm bound}\ {\rm state}$

Large distortion, deviations from IA Guzey, Strikman, CW; in progress

