Color transparency in JLab experiments and different reaction mechanisms

Holly Szumila-Vance Jefferson Lab

Workshop on The Future of Color Transparency and Hadronization Studies at Jefferson Lab and Beyond

7 June 2021

QCD describes the strong force in terms of quarks and gluons with color charge

nucleons & nuclei

quarks & gluons

How do we describe nuclei in terms of quarks & gluons?

How do we describe nuclei in terms of quarks & gluons?

nucleons & mesons

quarks & gluons

Onset of CT

¹²C(e,e'p) results from Hall C D. Bhetuwal et al., PRL 126 082301 (2021)

Next photo- and electroproduction experiments

In this talk:

Next photo- and electroproduction experiments

Probability knocked out proton in scattering to be deflected or absorbed.

$$T_A = \frac{\sigma_A}{A \sigma_N}$$

(nuclear cross section)

(free nucleon cross section)

$$\sigma_A = \sigma_N A^{\alpha}$$

Traditional nuclear physics calculations predict energy independent transparency

Transparency:

- scattering cross section
- Glauber multiple scattering
- Correlations and Final State Interaction (FSI) effects

Color transparency fundamental prediction of QCD

Introduced by Mueller and Brodsky, 1982

Vanishing of initial/final state interaction of hadrons with nuclear medium in exclusive processes at high momentum transfer

Color transparency fundamental prediction of QCD

Quantum mechanics:

Hadrons fluctuate to small transverse size (squeezing, transferred momentum)

Relativity:

Maintains this small size as it propagates out of the nucleus (*freezing*, transferred energy)

Strong force:

Experience reduced attenuation in the nucleus, color screened

Color transparency fundamental prediction of QCD

- Not predicted by strongly interacting hadronic picture → arises in picture of quark-gluon interactions
- QCD: color field of singlet objects vanishes as size is reduced
- Signature is a rise in nuclear transparency, $T_{\!A},$ as a function of the momentum transfer, Q^2

CT at high energies

son Lab

Aitala et al., PRL 86, 4773 (2001)

CT at high energies

Convergence of t-slope at large Q² is seen to be related to presence of small configuration qq-bar

CT relates to factorization

Color cancellation needed for **factorization**:

-> small objects

-> at high Q², small size object moves through nucleus

CT at high energies

$F_2(x,q^2)$ from HERA

DIS from heavy targets at high energies shows Bjorken scaling

evidence of no FSI \rightarrow CT?

Previous Measurements: Mesons

Enhancements consistent with CT (increasing with Q² and A) observed

CLAS E02-110 rho electro-production $A(e,e'\rho^0)$

Previous Measurements: Testing pion photoproduction

 $\gamma n \rightarrow \pi^- p$ in 4He in Hall A

D. Dutta et al. PRC 68.021001 (2003)

Previous Measurements: Baryons

Transparency in A(p,2p) experiment at Brookhaven:

- observed enhancement in transparency
- inconsistent with CT only
- could be explained by including nuclear filtering or charm resonance

Previous Measurements: Baryons

A(e,e'p) results consistent with standard nuclear physics

In this talk:

Onset of CT

¹²C(e,e'p) results from Hall C

D. Bhetuwal et al., PRL 126 082301 (2021)

Next photo- and electroproduction experiments

A(e,e'p) can reach higher proton momenta in 12 GeV upgrade

CT in Hall C at Jefferson Lab

Carbon missing momentum

 $\frac{d^6\sigma}{dE_{e'}d\Omega_{e'}dE_{p'}d\Omega_{p'}} = E_{p'}|p_{p'}|\sigma_{ep}S(E_m,\vec{p}_m)$

Hydrogen yield

Systematic uncertainty

Source	Q^2 dependent uncertainty (%)
Spectrometer acceptance	2.6
Event selection	1.4
Tracking efficiency	0.5
Radiative corrections	1.0
Live time & Det. efficiency	0.5
Source	Normalization uncertainty (%)
Elastic ep cross section	1.8
Elastic <i>ep</i> cross section Target thickness	$\begin{array}{c} 1.8 \\ 0.5 \end{array}$
Elastic ep cross section Target thickness Beam charge	$1.8 \\ 0.5 \\ 1.0$
Elastic <i>ep</i> cross section Target thickness Beam charge Proton absorption	$1.8 \\ 0.5 \\ 1.0 \\ 1.2$

No observation of the onset of CT

Checking for shell dependent transparency

Predicted by L. Frankfurt, M. Strikman, and M. Zhalov, Nuclear Physics A, vol. 515, no. 4, 1990, pp. 599–608.

D. Izraeli et al., PLB, vol. 781, Jun 2018, p. 95–98

1s- and 1p- shell transparency

Courtesy of D. Bhetuwal

Seems to be an apparent issue with the cut dependence

In this talk:

Onset of CT

¹²C(e,e'p) results from Hall C D. Bhetuwal et al., PRL 126 082301 (2021)

Next photo- and electroproduction experiments

Explore onset of CT in mesons

Measure the onset in pion electro-production over large momentum range in Hall C

Explore onset of CT in mesons

Rho transparency measurements will be extended to highest Q² in Hall B

CT in Hall D using photoproduction running Fall 2021!

Targets: ²H, ⁴He, ¹²C, ⁶³Cu

CT in Hall D using photoproduction

- High photon energy (freezing)
- Extends t-range
 (3.5 to >10 !)
- Extended $\theta_{C.M}$ coverage
- Many reaction channels (mesons and baryons)
- Ratios taken from data

Recent measurement will lead to new understanding!

- Caplow-Munro, Miller
 2104.11168 (previous talk)
- Two-stage CT, Brodsky & Teramond (next talk)

Next stage experiments will measure CT effects with different reaction mechanisms and precision

