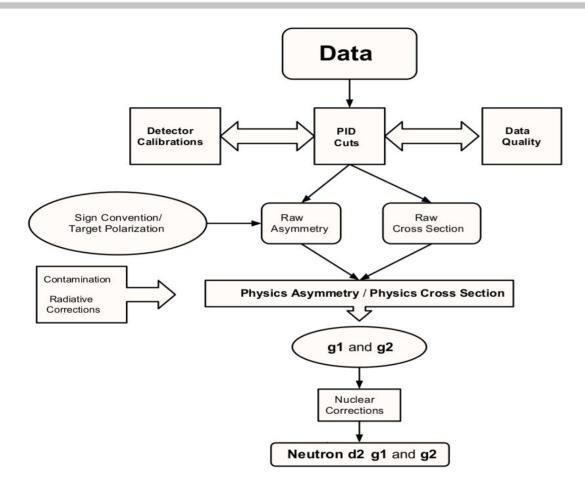

Polarized 3He Run Group in Hall C



Thomas Jefferson National Accelerator Facility Pol He3 A1n/d2n Collaboration Meeting (March 2021)

Rough Milestones from ERR (2018)

(Above) Figure 8.1(modified) from M. PosikE06-014 (d2n 2009) dissertation

Thomas Jefferson National Accelerator Facility

Pol He3 A1n/d2n Collaboration Meeting (March 2021)

Rough Milestones

2 months

(Jan/Feb 2021)

- → Screen run list
- → Establish analysis framework
- → Detector calibrations

• 4 months

6 months

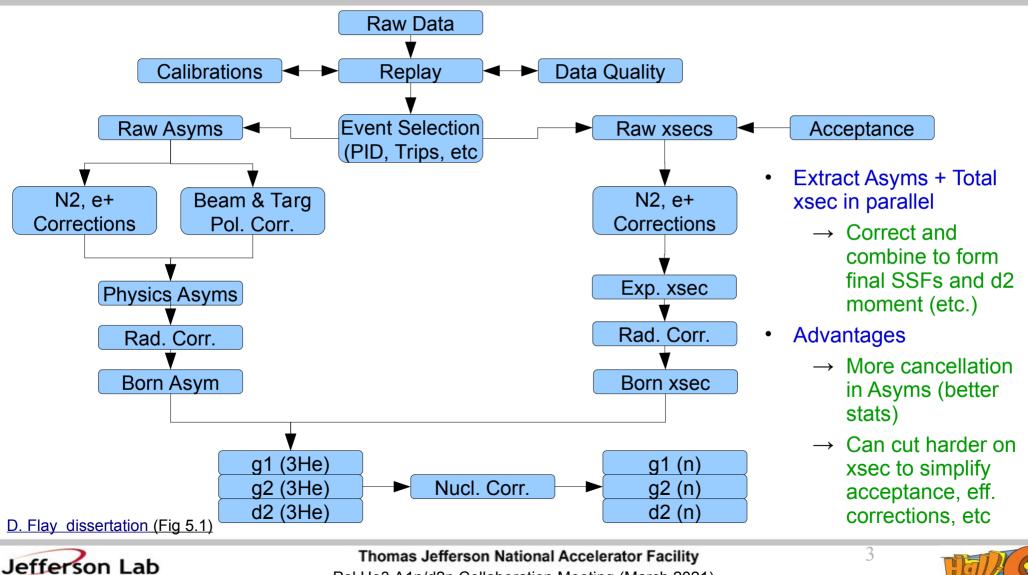
٠

٠

- (Mar/Apr 2021)
- \rightarrow Final optics, good PID
- → Target polarimetry analysis

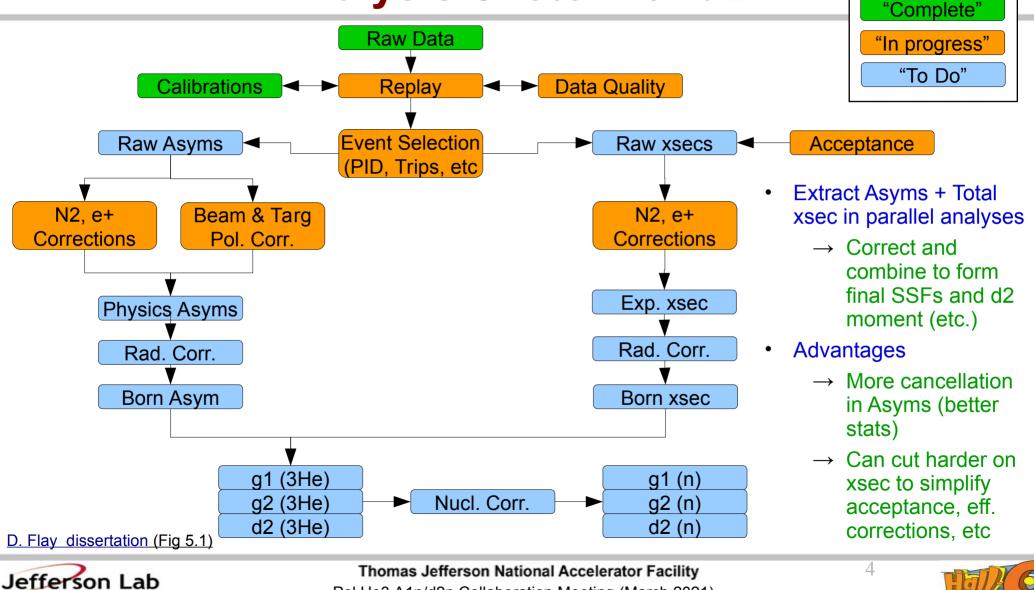
- (May/Jun 2021)
- \rightarrow Acceptance calculations
- → Finalize target polarimetery
- → Begin 'applied' work on necessary nuclear corrections (w/ Theory support)
- 12 months

- (Dec 2021/Jan 2022)
- \rightarrow Begin Rad. Correction analysis
- \rightarrow Initial 3He cross section extractions
- 18 months


(~Jun 2022)

- \rightarrow Finalize Rad. Corrections
- → Finalize Nuclear corrections
- → Finalize Systematics
- Target first short paper: 18 months
- Long paper: 30 n

30 months



Analysis Sketch for d2n

Pol He3 A1n/d2n Collaboration Meeting (March 2021)

Analysis Sketch for d2n

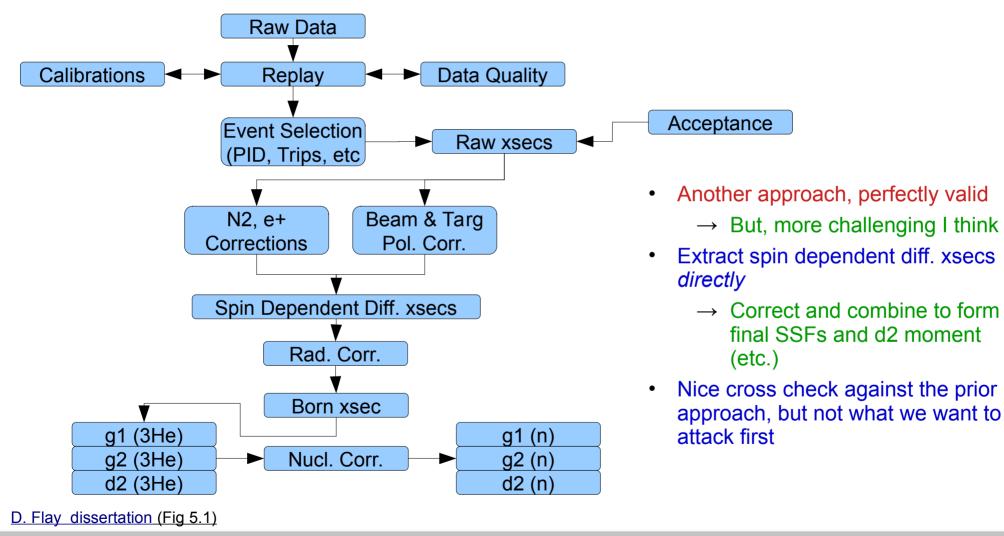
Pol He3 A1n/d2n Collaboration Meeting (March 2021)

d2 Students: Use our Roadmaps

- E06-014 ran in Hall A 2009
 - → Extracted d2n, g1n, g2n using very similar equipment and analysis methodology
 - → Experience and documented procedures will be invaluable
- PhD Dissertations / Analysis 'road-maps':
 - \rightarrow <u>D. Flay dissertation</u> (Temple U.)
 - → <u>D. Parno dissertation</u> (CMU)
 - \rightarrow <u>M. Posik dissertation</u> (Temple U.)

Thomas Jefferson National Accelerator Facility Pol He3 A1n/d2n Collaboration Meeting (March 2021)

Misc. Backup



Thomas Jefferson National Accelerator Facility Pol He3 A1n/d2n Collaboration Meeting (March 2021)

Analysis Sketch for d2n (2nd Approach)

Thomas Jefferson National Accelerator Facility

Pol He3 A1n/d2n Collaboration Meeting (March 2021)

Systematic Error Table

Item description	Subitem description	Relative uncertainty
Target polarization		1.5 %
Beam polarization		3 %
Asymmetry (raw)		
	 Target spin direction (0.1°) 	$< 5 \times 10^{-4}$
Cross section (raw)	Beam charge asymmetry	< 50 ppm
	• PID efficiency	< 1 %
	 Background Rejection efficiency 	$\approx 1 \%$
	 Beam charge 	< 1 %
	 Beam position 	< 1 %
	 Acceptance cut 	2-3 %
	 Target density 	< 2 %
	Nitrogen dilution	< 1 %
	Dead time	<1%
	Finite Acceptance cut	<1%
Radiative corrections		\leq 5 %
From ³ He to Neutron correction		5 %
Total systematic uncertainty (for both $g_2^n(x, Q^2)$ and $d_2(Q^2)$)		$\leq 10~\%$
Estimate of contributions to <i>d</i> ₂ from unmeasured region	$\int_{0.003}^{0.23} \tilde{d}_2^{p_1} dx$	4.8×10^{-4}
Projected absolute statistical uncertainty on d_2		$\Delta d_2 \approx 5 \times 10^{-4}$
Projected absolute systematic uncertainty on d_2 (assuming $d_2 = 5 \times 10^{-3}$)		$\Delta d_2 \approx 5 \times 10^{-4}$

