Simulation Status

Mingyu Chen University of Virginia March 25, 2021

<u>Outline:</u>

- 1. Introduction
- 2. Compare simulation with replayed data for A_1^n DIS kinematics
- 3. Window dilution study
- 4. Summary and Future work

Pol ³**He A**₁ⁿ/**d**₂ⁿ **Collaboration Meeting**

Introduction

- Using mc-single-arm to generate events for simulation and Peter Bosted model for cross-section to get the simulation for target chamber of the ³He production cell and empty reference cell.
- Perform simulation separately for different target material (N₂ gas between upstream beam-line window and upstream target window; Upstream target window; ³He in target chamber ; Downstream target window), then combine them to obtain the simulation for entire target.
- Get replayed data from hallc_replay with updated optics matrix. After weighted by yield, make comparison with simulation and replayed data.
- Based on simulation and replayed data, determine the window contribution along reconstructed z_{target}.

Propose and Goal of the Study

Propose:

- Provide a guide to determine z_{target} cuts to remove events coming from glass windows while preserve most of events from ³He inside target chamber.
- Estimate window dilution factor for certain production run condition (certain target cell, kinematics, spec) based on simulated results and replayed data.

Goal:

- For certain production run condition (certain target cell, kinematics, spec), the variation of window dilution factor is less than 3%.
- Find a proper z_{target} cuts so that the ΔA_{phys} become minimal.

Determine Yield

(for compare simulation with replayed data)

Replayed data:

- Obtain total charge (BCM1 Coulomb value) for a run from corresponding report file after hallc_replay.
- Then the yield is determined to weight the replayed histograms:

$$Yield = \frac{number of events}{total charge(C)}$$

Simulation:

 $d^2\sigma$

- For simulation, DIS cross-section $\overline{dEd \Omega}$ for each target material is calculated by Jixie's "CreateXSTree" program using Peter Bosted model.
- Then the yield is determined to weight the simulation histograms:

$$Yield = rate \frac{1}{beam \, current \, (A)} = \frac{d^2 \sigma}{dEd \, \Omega} E' \frac{\Delta E}{E} \Delta \phi_{tag} \Delta \theta_{tag} \rho_N \frac{target_{length}}{e_{charge} * N_{trials}}$$

Where
$$p_N$$
 is atom number density: $\rho_N = \frac{\rho_m N_A}{M}$

03/25/2021

Pol ³**He A**₁ⁿ/**d**₂ⁿ **Collaboration Meeting**

mc-single-arm Simulation Setup

• Number of trails=100 k

HMS Acceptance:

- Delta range: (-15%, 15%)
- Theta range: (-100 mr, 100 mr)
- Phi range: (-100 mr, 100 mr)

SHMS Acceptance:

- Delta range: (-20%, 30%)
- Theta range: (-70 mr, 70 mr)
- Phi range: (-80 mr, 80 mr)
- HMS Simulation Optics File: recon_cosy_refit_1.576_60cm.dat
- SHMS Simulation Optics File:

shms-2017-26cmmonte_q1_1018_q2_1027_q3_1018_ recon_60cm.dat Simulated Pol ³HeTarget: Cell Bigbrother HMS and SHMS:

- Upstream Window: GE180, Z=-21 cm, Length=0.01009 cm
- Downstream Window: GE180, Z=+19 cm, Length=0.01382 cm
- ³He Target Chamber: 12.0 amg, Z=-1.0 cm, Length=40.0 cm
- N₂ gas: 1.0 atm, Z=-25.5 cm, Length=9.0 cm (from Z=-30.0 cm to Z=-21.0 cm)

Simulated Empty Reference Target: cell Will HMS and SHMS:

- Upstream Window: GE180, Z=-20 cm, Length=0.015 cm
- Downstream Window: GE180, Z=+20cm, Length=0.015 cm
- N₂ gas: 1.0 atm, Z=-25.0 cm, Length=10.0cm (from Z=-30.0 cm to Z=-20.0 cm)

Cut used for Comparison

(Simulation vs. replayed data)

HMS cuts:

Acceptance cut:

- Delta cut: (-8%, 8%)
- Theta cut: (-70 mr, 70 mr)
- Phi cut: (-100 mr, 100 mr)

Z_{tar} Cut:

• abs(H.react.z)<30.0 (cm)

Current cut:

• ibcm1>1.0 (uA)

PID cut:

 H.cal.etracknorm>0.8 && H.cal.etracknorm<2.0 && H.cer.npeSum>1

Simulation cut used for comparison between simulation and replayed results :

• istop==0 (remove failed events)

SHMS cuts:

Acceptance cut:

- Delta cut: (-10%, 22%)
- Theta cut: (-55 mr, 55 mr)
- Phi cut: (-50 mr, 50 mr)

z_{tar} cut:

• abs(P.react.z)<30.0 (cm)

Current cut:

• ibcm1>1.0 (uA)

PID cut:

 P.cal.etracknorm>0.8 && P.cal.etracknorm<2.0 && P.ngcer.npeSum>1

Simulation cut used for comparison between simulation and replayed results :

• istop==0 (remove failed events)

Note on replay cuts:

- Current cut is used to remove non-physical events during beam trip.
- PID cut provides requirement for good track and remove pion contamination.

03/25/2021

Pol ³He A₁ⁿ/d₂ⁿ Collaboration Meeting

(Plot of y_{beam} vs. x_{beam})

- SHMS 10602: ³He DIS, Transverse 90°
- E_p=-3.4 GeV, 30°, kin-B
- Trigger: 3/4 (hTRIG1)

Pol ³He A₁ⁿ/d₂ⁿ Collaboration Meeting

- SHMS 10602: ³He DIS, Transverse 90°
- E_p=-3.4 GeV, 30°, kin-B
- Trigger: 3/4 (hTRIG1)

- From replayed runs, obtain $\boldsymbol{x}_{_{beam}}$ and $\boldsymbol{y}_{_{beam}}$ offsets from mean value.
- Add x_{beam} and y_{beam} offsets from replay into simulation in order to compare replayed data with simulated results.

03/25/2021

Pol ³He A₁ⁿ/d₂ⁿ Collaboration Meeting

- SHMS 10602: ³He DIS, Transverse 90°
- E_p=-3.4 GeV, 30°, kin-B •
- Trigger: 3/4 (hTRIG1) delta_combined Weighted by Yield

30

0.3

ztg combined Weighted by Yield delta_combined Weighted by Yield 12000 3500 Down Win Down Win Up Win Up Win 10000 3000 He3 Target He3 Target N2 Upstream N2 Upstrear 2500 8000 Simulation Combine Simulation Combine Replay Replay 2000 6000 1500 4000 1000 2000 500 0_. 30 -20 -10 10 theta combined Weighted by Yield phi combined Weighted by Yield 9000 E 12000 Down Win Down Win 8000 E Up Win Up Win 7000 He3 Target He3 Target 10000 N2 Upstream N2 Upstream 6000 Simulation Combine Simulation Combined 8000 5000 Renla Renlay 6000 4000 3000 4000 2000 2000 1000 0**C** -0.3 -0.2 -0.1 0 0.1 0.2 0.3 -0.2 -0.1 0.1 0.2 0.3

• SHMS 10345: ³He DIS, Longitudinal 180°

- E_p=-2.6 GeV, 30°, kin-C
- Trigger: 3/4 (pTRIG1)

03/25/2021

Pol ³He A₁ⁿ/d₂ⁿ Collaboration Meeting

ztg_combined Weighted by Yield

theta_combined Weighted by Yield

- HMS 3149: ³He DIS, Longitudinal 180°
- E_p=-2.9 GeV, 30°, kin-3

delta combined Weighted by Yield

• Trigger: 3/4 (hTRIG1)

3500 Down Win Up Win 3000 He3 Target N2 Upstream 2500 Simulation Combiner Replay 2000 1500 1000 500 0_30 -20 -10 10 20 30 0

phi_combined Weighted by Yield

Pol ³**He A**₁ⁿ/**d**₂ⁿ **Collaboration Meeting**

Simulation Combine

0.2

0.3

Replay

0.1

ztg_combined Weighted by Yield

- HMS 3408: ³He DIS, Transverse 90°
- E_p=-3.5 GeV, 30°, kin-4
- Trigger: 3/4 (hTRIG1)

delta_combined Weighted by Yield

phi_combined Weighted by Yield

-0.2

-0.1

0

800

600

400

200

0

Pol ³He A₁ⁿ/d₂ⁿ Collaboration Meeting

Empty Target Simulation (Compare with replayed root file results)

ztg_combined Weighted by Yield 4500 Down Win 4000 Up Win N2 Upstream 3500 Simulation Combine 3000 Replay 2500 2000 1500**E** 1000**E** 500 E 20 30 -20 -10 10 theta_combined Weighted by Yield 1400 Down Win Up Win 1200 N2 Upstream 1000 Simulation Combine Replay 800 600 400 4nv 200 0.3 -0.2 -0.1 0.1 0.2 0.3

- SHMS 10267: Empty Target DIS, Transverse 90°
- E_p=-3.4 GeV, 30°, kin-B
- Trigger: 3/4 (hTRIG1)

delta_combined Weighted by Yield

phi_combined Weighted by Yield

Empty Target Simulation (Compare with replayed root file results)

ztg combined Weighted by Yield

- SHMS 10262: Empty Target DIS, Longitudinal 180°
- E₀=-2.6 GeV, 30°, kin-C •

Trigger: 3/4 (hTRIG1)

.

Pol ³He A₁ⁿ/d₂ⁿ Collaboration Meeting

Empty Target Simulation

(Compare with replayed root file results)

- HMS 3072: Empty Target DIS, • Longitudinal 180°
- E_n=-2.9 GeV, 30°, kin-3 ٠
- Trigger: 3/4 (hTRIG1)

delta_combined Weighted by Yield 1600 Down Win 1400 Up Win N2 Upstream 1200 Simulation Combined 1000 Replay 800 600 400 200 0 _30 -20 -10 20 10

phi combined Weighted by Yield

Empty Target Simulation (Compare with replayed root file results)

- HMS 3077: Empty Target DIS, Transverse 90°
- E_n=-3.5 GeV, 30°, kin-4
- Trigger: 3/4 (hTRIG1)

03/25/2021

Pol ³He A₁ⁿ/d₂ⁿ Collaboration Meeting

Window Dilution

- N_{up} = integrated number of events from upstream window contribution within the z cut
- N_{down} = integrated number of events from downstream window contribution within the z cut
- N₀=integrated number of replayed events within the z cut

Note:

- Use empty reference cell runs to find first order window contribution.
- Use simulation results to do second order corrections on window contribution.
- Then define window dilution factor f_{win}:

$$f_{win} = \frac{N_{up} + N_{down}}{N_0}$$

• Since:

$$A_{phys} = \frac{A_{raw}}{P_b P_t f_{N2} (1 - f_{win})}$$

We would like to place a proper window z cut to minimize ΔA_{phys}:

$$\Delta A_{\rm phys} \propto \frac{1}{\sqrt{(N_0)}(1-f_{\rm win})}$$

Pol ³**He A**₁ⁿ/**d**₂ⁿ **Collaboration Meeting**

Window Dilution

- SHMS 10602: ³He DIS, Transverse 90°
- E_p=-3.4 GeV, 30°, kin-B
- Trigger: 3/4 (hTRIG1)

- N_{up} = integrated number of simulated events of upstream window within the z cut
- N_{down} = integrated number of simulated events of downstream window within the z cut
- N₀=integrated number of replayed events within the z cut

Note:

- Scale simulated upstream window histogram bins around z=-20.0 cm to match replayed data. (h_upstream*scale_up)
- For downstream window, use same scale factor as upstream window. (h_downstream*scale_up)
- Need to consider the effect of x_{beam} , y_{beam} offsets for simulation of the windows.

03/25/2021

Pol ³**He A**₁ⁿ/**d**₂ⁿ **Collaboration Meeting**

Window Dilution (effect of upstream window z cut position)

Window Dilution Factor

- SHMS 10602: ³He DIS, Transverse 90°
- E_p=-3.4 GeV, 30°, kin-B
- Trigger: 3/4 (hTRIG1)
- Fix downstream window z cut at z=+18.0 cm away from target chamber center position.
- Adjust upstream window z cut to minimize

• For z cut be (-17 cm,+18 cm), ΔA_{phys} is around minimal.

Note:

- For window dilution study needs more statistics (1M trials for simulation; chain multiple runs for replayed data)
- More study needs be done to finalize the z_{target} cuts.

03/25/2021

Pol ³He A₁ⁿ/d₂ⁿ Collaboration Meeting

Summary and Future Work

Summary:

- By using mc-single-arm simulation, the contribution from windows could be characterized.
- For A₁ⁿ DIS kinematics, the simulation is comparable to replayed data for both the ³He production cell and empty reference cell.

Future Work:

- Develop proper acceptance cuts to better compare simulation with data.
- Finish window dilution study, obtain window dilution factor for every production run condition during A₁ⁿ experiment.
- Once the window z_{target} cut is finalized, will shift focus to getting the A_1^n asymmetry from replayed data.

Backup Slides

03/25/2021

Pol ³**He A**₁ⁿ/**d**₂ⁿ **Collaboration Meeting**

Example of input file for Simulation

(for ³He gas in target chamber)

! ! Input file f	or MC_SINGLE_ARM		,	
100000 2 3400.0 30.0 -20.0 30.0 -80.0 80.0 -70.0 70.0 70.0 0.0089 0.0042 40.0 0.4 100.0 100.0 100.0 100.0 100.0 100.0 100.0 0.0547 -0.1547 -0.1547 -0.1547 -0.1547 -0.1547 -0.1547 -0.1779 -1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Monte-Carlo trials Spectrometer (1=HMS, 2=SHMS, 3=) Spectrometer momentum (in MeV/c) Spectrometer angle (in degrees)C M.C. DP/P down limit M.C. DP/P up limit M.C. Phi (dy/dz) down limit (mr) M.C. Phi (dy/dz) down limit (mr) M.C. Theta (dx/dz) down limit (mr) M.C. Theta down limit (mr)C Horiz beam spot size in cm (Full width of +/- Vert beam spot size in cm (Full width of +/- Length of target (Full width, cm) Raster full-width x (cm) Raster full-width y (cm) DP/P reconstruction cut (half width in %) Theta reconstruction cut (half width in mr) Phi reconstruction cut (Half width in cm) one radiation length of target material (in cm Beam x offset (cm) +x = beam left Beam y offset (cm) +x = downstream Spectrometer x offset (cm) Spectrometer x offset (mr) Spectrometer y offset (mr) Spectrometer y offset (mr) Spectrometer y offset (mr) particle identification :=e0, p=1, d=2, pi=3, flag for multiple scattering flag for storing all events (including failed flag for beam energy, if >0 then calculate for flag to use sieve • Turn on flag for save all events 2(25/2021 Pol ³ He A. ⁴	For Hall C optics interchanged theta and phi 3 sigma) 3 sigma))) ka=4 events with stop_id = C elastic Simulation cut us between simulat • istop==0 (rem c elastion	Variables in replayed • Target reconstructer golden track variable P.gtr.dp \rightarrow delta P.gtr.x \rightarrow x target P.gtr.y \rightarrow y target P.gtr.ph \rightarrow y' target P.gtr.th \rightarrow x' target • Technically, tanger ($x' = \frac{dx}{dz}$) • 0) sed for comparison ion and replayed results : hove failed events)	Page:22
U		2	O	~

Optics Matrix Used for hallc_replay

	Open T R pcana.param Save = x
Open → 🖳 hcana.param Save = _ □ >	/group/c-polhe3/Users/mychen/GitLab/hallc_replay/PA
/group/c-poine3/Users/mychen/GITLab/halic_replay/PARAM/HMS/GEN	;SHMS Central Path Lenth from target to focal plane
; Parameters that were built into Fortran analyzer that we want	SHMS_CentralPathLen = 18.1*100 ; 18.1 m (or 1810 cm)
; to pass as parameters so that the resulting code can be more generic.	
; . Scintillator parameters	
, schiltlator parameters	; Parameters we need to keep THcHallCSpectrometer Happy
href nsperchan - 0 1	;p_recon_coeff_filename = "DATFILES/SHMS_fr3_recorder_5.dat"
href offset = 0.0	;p recon coeff filename = "DATFILES/shms-2011-26cm-monte q2 p20 rec.dat"
	;p recon coeff filename = "DATFILES/shms-2011-26cm-monte q2 m015 rec.dat"
HMS Central Path Lenth from target to focal plane	;p recon coeff filename = "DATFILES/shms dipole 2plow.dat"
HMS Central Pathlen = 22.*100 : 22 m (or 2200 cm)	:p_recon_coeff_filename = "DATFILES/shms-2017-optimized.dat"
	:p recon coeff filename = "DATFILES/shms-2017-optimized delta newfit3.dat"
hcal num lavers = 4	
	· New SHMS Optics by Holly from August 2020
rraster num signals = 4	in recon coeff filename = "DATETIAGAS' fit global dat"
	p recon coeff filename = "DATELIS/nav_iit_global zbin allAln dat"
# Exclusion band width for the calorimeter's fiducial volume.	p_recon_coert_ritename = DATTILS/newrit_gtobat_zbin_attATT.dat
hcal_fv_delta = 5.	, fall 2010 defection time > 0.2 current set to 120% of nominal time
	; hat 2019 derocused tune -> Q2 current set to 120% of hominat tune
# Constants for the coordiante correction of the calorimeter energy depositions	; $p_{recon_{coe1}} = 122$ and $p_{recon_{coe1}} = p_{recon_{coe1}} = p_{recon_{coe1}} = 122$
hcal_a_cor = 200.	monte_quads_pis_qz_ize_rec.dat
hcal_b_cor = 8000.	c
hcal_c_cor = 64.36, 64.36 # for positive and negative sides	
$ncat_a_{cor} = 1.00, 1.00$	
hcal laver names = "1pr 2ta 3ta 4ta"	
# The following were defined in REPLAY.PARAM	
;h_recon_coeff_filename = 'DATFILES/hms_recon_coeff.dat' ;hms optics matrix	
;h_recon_coeff_filename = 'DATFILES/hms_recon_coeff_opt2018.dat' ;hms optics matrix	
h_recon_coeff_filename = 'DATFILES/hms_newfit_poltar.dat' ; new fit hms optics matrix	
Plain Text 🗸 Tab Width: 8 🗸 🛛 Ln 13, Col 13 🛛 🗸 INS	Plain Text 🕶 Tab Width: 8 👻 🛛 Ln 1, Col 1 🛛 💌 INS
	FOUD/C-DOLDe3/USEFS/MVChen/(1flab/hallc_replay

Hall C replay Optics Matrix for HMS:

hallc_replay/DATFILES/ hms_newfit_poltar.dat Hall C replay Optics Matrix for SHMS:

hallc_replay/DATFILES/ newfit_global_zbin_allA1n.dat

03/25/2021

Pol ³**He A**₁^{**n**}/**d**₂^{**n**} **Collaboration Meeting**

Summary of Sampled Runs

1) A_{1^n} Sampled Runs:

Date	Run start time	Run end time	Run num	Field Direction (deg)	Spec	Kine	Spec angle (deg)	E _p (GeV)	Trigger	Target Type	Replayed Event #	BCM1 Coulomb value (uC)	Comment
03/02	17:09	18:09	3408	90	HMS	Kine-4	30	-3.5	3/4	Pol- ³ He	All; -1	66634.94	Cell Bigbrother
02/16	22:49	00:07	10345	180	SHMS	Kine-C	30	-2.6	3/4	Pol- ³ He	All; -1	108080.51	Cell Bigbrother
02/16	18:51	19:56	3149	180	HMS	Kine-3	30	-2.9	3/4	Pol- ³ He	All; -1	72592.49	Cell Bigbrother
03/02	17:09	18:09	10602	90	SHMS	Kine-B	30	-3.4	3/4	Pol- ³ He	All; -1	66550.76	Cell Bigbrother
02/12	05:05	06:04	3072	180	HMS	Kine-3	30	-2.9	3/4	Vacuum	All; -1	63214.82	Cell Will
02/12	05:05	06:04	10262	180	SHMS	Kine-C	30	-2.6	3/4	Vacuum	All; -1	63191.39	Cell Will
02/12	18:53	19:43	3077	90	HMS	Kine-4	30	-3.5	3/4	Vacuum	All; -1	50611.94	Cell Will
02/12	18:53	19:42	10267	90	SHMS	Kine-B	30	-3.4	3/4	Vacuum	All; -1	50383.88	Cell Will

03/25/2021

Pol ³**He A**₁ⁿ/**d**₂ⁿ **Collaboration Meeting**

Summary of Sampled Runs

1) A_{1^n} Sampled Runs:

Date	Run start time	Run end time	Run num	Field Direction (deg)	Spec	Kine	Spec angle (deg)	E _p (GeV)	Trigger	Target Type	X _{beam} Mean (cm)	Y _{beam} Mean (cm)	Comment
03/02	17:09	18:09	3408	90	HMS	Kine-4	30	-3.5	3/4	Pol- ³ He	-0.1566	-0.1702	Cell Bigbrother
02/16	22:49	00:07	10345	180	SHMS	Kine-C	30	-2.6	3/4	Pol- ³ He	-0.1332	-0.1825	Cell Bigbrother
02/16	18:51	19:56	3149	180	HMS	Kine-3	30	-2.9	3/4	Pol- ³ He	-0.1384	-0.1725	Cell Bigbrother
03/02	17:09	18:09	10602	90	SHMS	Kine-B	30	-3.4	3/4	Pol- ³ He	-0.1547	-0.1779	Cell Bigbrother
02/12	05:05	06:04	3072	180	HMS	Kine-3	30	-2.9	3/4	Vacuum	-0.1336	-0.1658	Cell Will
02/12	05:05	06:04	10262	180	SHMS	Kine-C	30	-2.6	3/4	Vacuum	-0.1279	-0.1718	Cell Will
02/12	18:53	19:43	3077	90	HMS	Kine-4	30	-3.5	3/4	Vacuum	-0.1279	-0.1577	Cell Will
02/12	18:53	19:42	10267	90	SHMS	Kine-B	30	-3.4	3/4	Vacuum	-0.123	-0.1742	Cell Will

03/25/2021

Pol ³**He A**₁ⁿ/**d**₂ⁿ **Collaboration Meeting**

Cell Window Position

(from survey group)

VALUES IN MM AND DEGREES RELATIVE TO HALL C TARGET CENTERLINE A POSITIVE X IS BEAM LEFT, A POSITIVE Y IS UP AND A POSITIVE Z IS DOWNSTREAM Surveyed on 10/06/2020

	CELLS							
Reference US	-196.4	****Measu	ired to 3d p	rint	ed fixture pla	ced against	cell surface	
Reference <u>DS</u>	199.3							
TGT CELL US	-190.3							
TGT CELL DS	210.7							

- For Production Cell "Tommy" and reference cell "Fauci" after d₂ⁿ experiment
- No survey results for production cell and reference cell during A_{1^n} experiment

Target Cell Window Thickness

	[Cell Dutch] 01/04/202			
Density (amg)	V_tot (cc)			
7.759	441.54	297.15	32.52	
	Production Cell "Dutch	" Wall Thickness		
	Measurement location	Position away from center (along Z) [cm]	Ultrasonic thickness gauge [mm]	Hclog link
	#1	-12.5±0.16	1.323±0.01	https://logbooks.jlab.org/entry/3757788
	#2	-6.25±0.16	1.295±0.01	
	#3	0.0±0.16	1.275±0.01	
	#4	6.25±0.16	1.286±0.01	
TC front	#5	12.5±0.16	1.267±0.01	
	#6	-12.5±0.16	1.341±0.01	
	#7	-6.25±0.16	1.342±0.01	
	#8	0.0±0.16	1.334±0.01	
	#9	6.25±0.16	1.339±0.01	
TC rear	#10	12.5±0.16	1.361±0.01	
Window Thickness	Front window (um)	Back Window (um)	Cold life Time (hr)	Max Polarization no beam (%)
	134.142 ± 0.063	143.475±0.072	29.4 (UVa)	53 (UVa)
	Downstream z=+20 cm	Upstream z=-20 cm		

Pol ³**He A**₁ⁿ/**d**₂ⁿ **Collaboration Meeting**

Target Cell Window Thickness

	[Cell Bigbrother] 02/12			
Density (amg)	V_ pc (cc)			
7.093	293.82	100.76	32.6	
	Production Cell "Bigbro	other" Wall Thickness		
	Measurement location	Position away from center (along Z) [cm]	Ultrasonic thickness gauge [mm]	Hclog link
	#1	-12.5±0.16	1.507±0.01	https://logbooks.jlab.org/entry/3762599
	#2	-6.25±0.16	1.531±0.01	
TC front	#3	0.0±0.16	1.528±0.01	
	#4	6.25±0.16	1.517±0.01	
	#5	12.5±0.16	1.533±0.01	
	#6	-12.5±0.16	1.415±0.01	
	#7	-6.25±0.16	1.436±0.01	
TC rear	#8	0.0±0.16	1.407±0.01	
	#9	6.25±0.16	1.405±0.01	
	#10	12.5±0.16	1.406±0.01	
Window Thickness	Front window (um)	Back Window (um)	Cold life Time (hr)	Max Polarization no beam (%)
	138.1961±0.059	100.8740±0.0698	26 (UVa)	60 (UVa)
	Downstream z=+20 cm	Upstream z=-20 cm		

03/25/2021

Pol ³**He A**₁ⁿ/**d**₂ⁿ **Collaboration Meeting**

Calculation of Atom Number Density

 $\rho_N = \frac{\rho_m N_A}{M}$

- For p_m be mass density, M be molar mass, N_A be Avogadro's Number=6.022E23/mol

Target Type	Mass Density p _m (g/cm³)	Molar Mass M (g/mol)	Pressure	Number Density p _N (#/m³)
³ He target	1.345E-4	3.01603	1.0 amg	2.686E25
N ₂ gas	1.1602E-2	14.0067	1.0 atm	4.987E25
GE180	2.77	54.7251	NA	3.0481E28
C ₁₂	2.267	12.01078	NA	1.6532E28

- For ³He target chamber, use 12.0 amg to calculate yield for simulation
- For N₂ gas between Z=(-30,-20) cm between beamline exit window and upstream glass window, use 1.0 atm to calculate yield for simulation.