Helium3 Target Field Mapping Status

Jixie Zhang

C-polhe3 Collaboration Meeting

3/25/2021

Highlights Will only talk color red parts

- Overview of target coils
- Overview of field direction definitions
- First comparison to compass measurements, probe orientation not know yet
- Determine TOSCA map's current, HB, HL, HS
- Modeling the background field (earth field and the environment activation)
- Modeling the HB field
- Determine the probe's orientation
- Create an interactive Field Model using excel
- Create Super TOSCA Model using python
- Compare to compass measurement again
- Compare to vertical field measurement
- Error Analysis
- D2N field mapping analysis status
- Summary

Compare to Compass Measurements

	12.5 deg a	nd 7.5GeV			18deg an	d 5.6GeV			30deg an	d 3.4GeV	
Z+	Z -	X+	X-	Z+	Z-	X+	X-	Z+	Z-	X+	Х-
-2.12	178.88	87.60	-89.95	-0.61	178.72	88.02	-90.42	-1.67	178.54	89.00	-90.64
-2.15	178.89	87.71	-90.18	-0.81	178.76	87.96	-90.47	-1.69	178.55	88.91	-90.69
-2.15	179.13	87.85	-90.44	-2.36	178.96	88.29	-90.86	-1.75	178.82	88.99	-90.99
-2.14	179.23	87.75	-90.26	-2.49	179.04	88.22	-90.70	-1.80	178.96	89.05	-90.93
-2.34	179.10	86.98	-89.71	-3.65	178.92	87.80	-90.43	-2.08	178.90	88.84	-90.73
-2.20	179.10	87.00	-89.56	-3.65	178.94	87.88	-90.33	-1.87	178.85	88.83	-90.52
ession											
3.14E-03	-6.27E-03	1.54E-02	-9.36E-03	7.71E-02	-5.59E-03	2.55E-03	-4.15E-04	7.28E-03	-9.36E-03	2.69E-03	3.40E-05
-2.18	179.05	87.50	-90.03	-2.16	178.88	88.03	-90.54	-1.80	178.76	88.94	-90.75
0.435	0.597	0.461	0.227	0.998	0.596	0.052	0.001	0.692	0.771	0.248	0.000
	Z+ -2.12 -2.15 -2.14 -2.34 -2.20 ssion 3.14E-03 -2.18 0.435	12.5 deg a Z+ Z- -2.12 178.88 -2.15 179.13 -2.14 179.23 -2.34 179.10 -2.20 179.10 ssion 3.14E-03 -6.27E-03 -2.18 179.05 0.435 0.597	12.5 deg and 7.5GeV Z+ Z- X+ -2.12 178.88 87.60 -2.15 178.89 87.71 -2.15 179.13 87.85 -2.14 179.23 87.75 -2.34 179.10 86.98 -2.20 179.10 87.00 ssion 3.14E-03 -6.27E-03 1.54E-02 -2.18 179.05 87.50 0.435 0.597 0.461	12.5 deg and 7.5GeV Z+ Z- X+ X- -2.12 178.88 87.60 -89.95 -2.15 178.89 87.71 -90.18 -2.15 179.13 87.85 -90.44 -2.14 179.23 87.75 -90.26 -2.34 179.10 86.98 -89.71 -2.20 179.10 87.00 -89.56 ssion 3.14E-03 -6.27E-03 1.54E-02 -9.36E-03 -2.18 179.05 87.50 -90.03 0.435 0.597 0.461 0.227	12.5 deg and 7.5GeV Z+ Z- X+ X- Z+ -2.12 178.88 87.60 -89.95 -0.61 -2.15 178.89 87.71 -90.18 -0.81 -2.15 179.13 87.85 -90.44 -2.36 -2.14 179.23 87.75 -90.26 -2.49 -2.34 179.10 86.98 -89.71 -3.65 -2.20 179.10 87.00 -89.56 -3.65 -2.15 179.10 87.00 -89.56 -3.65 -2.14 179.10 87.00 -89.56 -3.65 -2.10 179.10 87.00 -89.56 -3.65 -2.18 179.05 87.50 -90.03 -2.16 0.435 0.597 0.461 0.227 0.998	12.5 deg and 7.5GeV 18deg and Z+ Z- X+ X- Z+ Z- -2.12 178.88 87.60 -89.95 -0.61 178.72 -2.15 178.89 87.71 -90.18 -0.81 178.76 -2.15 179.13 87.85 -90.44 -2.36 178.96 -2.14 179.23 87.75 -90.26 -2.49 179.04 -2.34 179.10 86.98 -89.71 -3.65 178.92 -2.20 179.10 87.00 -89.56 -3.65 178.94 *ssion 3.14E-03 -6.27E-03 1.54E-02 -9.36E-03 7.71E-02 -5.59E-03 -2.18 179.05 87.50 -90.03 -2.16 178.88 0.435 0.597 0.461 0.227 0.998 0.596	12.5 deg and 7.5GeV 18deg and 5.6GeV Z+ Z- X+ X- Z+ Z- X+ -2.12 178.88 87.60 -89.95 -0.61 178.72 88.02 -2.15 178.89 87.71 -90.18 -0.81 178.76 87.96 -2.15 179.13 87.85 -90.44 -2.36 178.96 88.29 -2.14 179.23 87.75 -90.26 -2.49 179.04 88.22 -2.34 179.10 86.98 -89.71 -3.65 178.92 87.80 -2.20 179.10 87.00 -89.56 -3.65 178.94 87.88 ssion 3.14E-03 -6.27E-03 1.54E-02 -9.36E-03 7.71E-02 -5.59E-03 2.55E-03 -2.18 179.05 87.50 -90.03 -2.16 178.88 88.03 0.435 0.597 0.461 0.227 0.998 0.596 0.052	12.5 deg and 7.5GeV 18deg and 5.6GeV Z+ Z- X+ X- Z+ Z- X+ X- -2.12 178.88 87.60 -89.95 -0.61 178.72 88.02 -90.42 -2.15 178.89 87.71 -90.18 -0.81 178.76 87.96 -90.47 -2.15 179.13 87.85 -90.44 -2.36 178.96 88.29 -90.86 -2.14 179.23 87.75 -90.26 -2.49 179.04 88.22 -90.70 -2.34 179.10 86.98 -89.71 -3.65 178.92 87.80 -90.43 -2.20 179.10 87.00 -89.56 -3.65 178.94 87.88 -90.33 ssion 3.14E-03 -6.27E-03 1.54E-02 -9.36E-03 7.71E-02 -5.59E-03 2.55E-03 -4.15E-04 -2.18 179.05 87.50 -90.03 -2.16 178.88 88.03 -90.54 0.435 <	12.5 deg and 7.5GeV 18deg and 5.6GeV Z+ Z- X+ X- Z+ Z- X+ X- Z+ -2.12 178.88 87.60 -89.95 -0.61 178.72 88.02 -90.42 -1.67 -2.15 178.89 87.71 -90.18 -0.81 178.76 87.96 -90.47 -1.69 -2.15 179.13 87.85 -90.44 -2.36 178.96 88.29 -90.86 -1.75 -2.14 179.23 87.75 -90.26 -2.49 179.04 88.22 -90.70 -1.80 -2.34 179.10 86.98 -89.71 -3.65 178.92 87.80 -90.43 -2.08 -2.20 179.10 87.00 -89.56 -3.65 178.94 87.88 -90.33 -1.87 ssion 3.14E-03 -6.27E-03 1.54E-02 -9.36E-03 7.71E-02 -5.59E-03 2.55E-03 -4.15E-04 7.28E-03 -2.18 179.05 87.50 -90.	12.5 deg and 7.5GeV 18deg and 5.6GeV 30deg and Z+ Z- X+ X- Z+ Z- X+ X- Z+ Z- -2.12 178.88 87.60 -89.95 -0.61 178.72 88.02 -90.42 -1.67 178.54 -2.15 178.89 87.71 -90.18 -0.81 178.76 87.96 -90.47 -1.69 178.55 -2.15 179.13 87.85 -90.44 -2.36 178.96 88.29 -90.86 -1.75 178.82 -2.14 179.23 87.75 -90.26 -2.49 179.04 88.22 -90.70 -1.80 178.96 -2.34 179.10 86.98 -89.71 -3.65 178.92 87.80 -90.43 -2.08 178.90 -2.20 179.10 87.00 -89.56 -3.65 178.94 87.88 -90.33 -1.87 178.85 ssion	12.5 deg and 7.5GeV 30deg and 3.4GeV Z+ Z- X+ X- Z+ Z- X+ -2.12 178.88 87.60 -89.95 -0.61 178.72 88.02 -90.42 -1.67 178.54 89.00 -2.15 178.89 87.71 -90.18 -0.81 178.76 87.96 -90.47 -1.69 178.55 88.91 -2.15 179.13 87.85 -90.44 -2.36 178.96 88.29 -90.86 -1.75 178.82 88.99 -2.14 179.23 87.75 -90.26 -2.49 179.04 88.22 -90.70 -1.80 178.90 88.84 -2.20 179.10 86.98 -89.71 -3.65 178.92 87.80 -90.33 -1.87 178.85 88.83 </th

Interpolated JZ's prediction

		12.5 deg and 7.5GeV				18deg and 5.6GeV				30deg and 3.4GeV			
z location	Z+	Z-	X+	X-	Z+	Z-	X+	X-	Z+	Z-	X+	X-	
-12	-2.22	179.12	87.32	-89.92	-3.08	178.95	88.00	-90.53	-1.89	178.87	88.91	-90.75	
0	-2.18	179.05	87.50	-90.03	-2.16	178.88	88.03	-90.54	-1.80	178.76	88.94	-90.75	
12	-2.14	178.97	87.69	-90.14	-1.23	178.82	88.06	-90.54	-1.71	178.65	88.97	-90.75	

MR's measurement

		12.5 deg and 7.5GeV				18deg an	d 5.6GeV		30deg and 3.4GeV			
z location	Z+	Z-	X+	X-	Z+	Z-	X+	X-	Z+	Z-	X+	X-
-12	0.62	179.97	88.70	-88.96	0.46	179.81	88.98	-89.35	0.22	179.65	89.69	-89.64
0	0.49	180.10	88.81	-89.27	0.37	179.99	89.20	-89.71	0.17	179.82	89.80	-89.93
12	0.46	180.19	88.45	-89.00	0.34	180.06	89.03	-89.57	0.19	179.96	89.78	-89.87

diff=JZ-MR	12.5 deg and 7.5GeV				18deg and 5.6GeV				30deg and 3.4GeV			
z location	Z+	Z-	X+	X-	Z+	Z-	X+	X-	Z+	Z-	X+	X-
-12	-2.84	-0.85	-1.39	-0.96	-3.55	-0.86	-0.98	-1.18	-2.11	-0.78	-0.78	-1.10
0	-2.67	-1.06	-1.30	-0.76	-2.53	-1.10	-1.16	-0.83	-1.97	-1.06	-0.86	-0.82
12	-2.60	-1.22	-0.76	-1.14	-1.57	-1.25	-0.97	-0.97	-1.90	-1.32	-0.81	-0.87
Average=		-1.04	-1.15	-0.95		-1.07	-1.04	-0.99		-1.05	-0.82	-0.93

Average All= -1.01

Z+ polarity predictions were not as accurate as other polarities due to missing some single coil measurements;

Z-,X+ and X- polarities measurements indicate that the probe have -1.01 degree off the beam line, pointing to beam right if looking downstream. J. Zhang 3

Modeling the Background

	raw Measurement										
z_raw	z_true	+Bz									
19.95	17.95	0.568	-0.067	-0.458	-0.329						
17.95	15.95	0.584	-0.089	-0.461	-0.347						
-3.05	-5.05	0.59	-0.145	-0.404	-0.406						
-5.05	-7.05	0.575	-0.143	-0.408	-0.379						
-18.05	-20.05	0.514	-0.118	-0.37	-0.336						

3rd order polynomial fit

	Bx	Ву	Bz
p0	-0.151774400	-0.426437000	-0.410935000
p1	-0.000185004	-0.003013420	-0.002030850
p2	0.000188283	0.000027999	0.000236038
p3	5.714280E-06	2.027390E-06	7.397510E-06

Linear Regression

Slope	0.001596	-0.002377	0.000615
Intercept	-0.112959	-0.419368	-0.359615
R^2	0.578200	0.987817	0.095295

	3rd-order_Fitted – Data										
z	dB	dBx	dBy	dBz							
17.95		0.0056	-0.0018	0.0004							
15.95		0.0054	0.0018	-0.0063							
-5.05		-0.0018	-0.0068	0.0104							
-7.05		-0.0001	0.0035	-0.0085							
-20.05		-0.0004	-0.0011	0.0010							
mean=		0.001731745	-0.0008627655	-0.0005716536							

	Linear_Fitted – Data											
z	dB	dBx	dBy	dBz								
17.95		-0.0173	-0.0040	-0.0196								
15.95		0.0015	0.0037	-0.0028								
-5.05		0.0240	-0.0034	0.0433								
-7.05		0.0188	0.0054	0.0150								
-20.05		-0.0270	-0.0017	-0.0359								
mean=		0	1.110223E-17	-6.661338E-17								

Probe Orientation Definition

' dBx ~= -sin(alpha)*By0 + sin(beta)*Bz0 ~=sin(yaw)*Bz0

Sin(Yaw) = dBx/Bz0

Direction		180deg			0deg	
Z_pos	Bz0	dBx	Yaw	Bz0	dBx	Yaw
20.00	-26.20	0.73	-1.60	26.20	-0.78	-1.71
18.00	-26.16	0.74	-1.62	26.16	-0.79	-1.74
-3.00	-26.09	0.71	-1.56	26.09	-0.78	-1.72
-5.00	-26.09	0.69	-1.52	26.09	-0.75	-1.65
-18.00	-26.19	0.73	-1.59	26.19	-0.82	-1.79
-20.00 -26.25 0.70		-1.52	26.25	-0.77	-1.67	
Average (deg)			-1.57			-1.72

' dBy ~= sin(alpha)*Bx0 - sin(gamma)*Bz0 ~= sin(roll)*Bx0 Sin(Roll) = dBy/Bx0

Direction		270deg			90deg	
Z_pos	Bx0	dBy	Roll	Bx0	dBy	Roll
20.00	-25.93	1.07	-2.37	25.93	-1.10	-2.43
18.00	-25.88	1.07	-2.36	25.88	-1.08	-2.39
-3.00	-25.69	0.97	-2.16	25.69	-0.98	-2.19
-5.00	-25.71	0.97	-2.16	25.71	-0.99	-2.21
-18.00	-25.93	1.01	-2.24	25.93	-1.02	-2.25
-20.00	-25.99	0.98	-2.17	25.99	-0.99	-2.19
Average	(deg)		-2.24			-2.28

A pitch is a counterclockwise rotation of 'gamma' about the x-axis A yaw is a counterclockwise rotation of 'beta' about the y-axis. A roll is a counterclockwise rotation of 'alpha' about the z-axis

Rotation R performs the pitch(gamma) first, then the yaw(beta), and finally the roll(alpha):

$$R(\alpha,\beta,\gamma) = R_z(\alpha) R_y(\beta) R_x(\gamma) = \begin{pmatrix} \cos\alpha \cos\beta & \cos\alpha \sin\beta \sin\gamma - \sin\alpha \cos\gamma & \cos\alpha \sin\beta \cos\gamma + \sin\alpha \sin\gamma \\ \sin\alpha \cos\beta & \sin\alpha \sin\beta \sin\gamma + \cos\alpha \cos\gamma & \sin\alpha \sin\beta \cos\gamma - \cos\alpha \sin\gamma \\ -\sin\beta & \cos\beta \sin\gamma & \cos\beta \cos\gamma \end{pmatrix}.$$

The reverse rotation of R is $R^{-1} = R^{+}$, use R^{-1} one can rotate measurement back to Lab coordinate system.

field mapping

Fit Probe Orientation by HL

HH45deg Large Coil Only

/home/jixie/DISK/work/A1N/mapping/Helmholtz coils only/Bz 30deg/result rot.txt

TOSCA: HH45deg Large Coil with Steel .1=+26A/cm^2

I_(A)=-7.169 range=B3:H8 sign=-1

		louog	Lago co										
Pos	ition (cm)		Measu	rement		TOSCA, HL coil only						
x	у	Z	B_data	Bx	Ву	+Bz	B_t	Bx	Ву	+Bz	Ratio		
0	-0.07	19.95	25.300	17.527	-0.906	18.223	18.702	-13.162	-0.010	-13.286	1.353		
0	-0.06	17.95	25.239	17.478	-0.940	18.185	18.674	-13.138	-0.017	-13.271	1.352		
0	0.01	-3.05	25.113	17.320	-0.901	18.162	18.621	-13.062	-0.051	-13.271	1.349		
0	0.02	-5.05	25.116	17.334	-0.939	18.152	18.630	-13.069	-0.054	-13.277	1.348		
0	0.06	-18.1	25.315	17.456	-0.912	18.312	18.730	-13.167	-0.074	-13.321	1.352		
0	0.07	-20.1	25.380	17.519	-0.893	18.342	18.762	-13.193	-0.080	-13.340	1.353		
Note: Ratio = B_data / B_tosca, B_tosca_scaled = B_tosca * <ratio> average=</ratio>									1.351				

Rotate back to the hall coordinate system.

deg:	pitch=	0.939	yaw= -0.882	roll= -2.250
rad:	gamma= (0.01639	beta= -0.01539	alpha= -0.03927
Rotation matrix:				
1	0.9991	-0.0393	0.0154\	
R^-1=	0.0390	0.9991	0.0164	
I.	-0.0160	-0.0158	0.9997/	

old_J= 26.000
> New_J=-35.123
> New_l= 5.307

Final Result												
optimized min max												
pitch	0.939	0.821	1.056									
yaw	-0.882	-0.982	-0.781									
roll	-2.250	-2.371	-2.129									

Pos	ition (cm)	Rotated Data					Scaled	TOSCA		Rotated_Data - Scaled_TOSCA			
X	У	Z	Btot	Bx	By	+Bz	Btot	Bx	Ву	+Bz	dBtot	dBx	dBy	dBz
0	0	20	25.300	17.827	0.077	17.952	25.264	17.781	0.014	17.948	0.036	0.047	0.063	0.004
0	0	18	25.240	17.779	0.041	17.915	25.227	17.748	0.023	17.928	0.013	0.031	0.018	-0.013
0	0	-3	25.113	17.620	0.073	17.894	25.155	17.646	0.069	17.928	-0.042	-0.026	0.004	-0.034
0	0	-5	25.117	17.635	0.035	17.884	25.167	17.655	0.073	17.936	-0.051	-0.020	-0.038	-0.051
0	0	-18	25.315	17.758	0.070	18.042	25.303	17.787	0.100	17.995	0.013	-0.029	-0.030	0.047
0	0	-20	25.380	17.821	0.092	18.071	25.346	17.822	0.108	18.021	0.034	-0.002	-0.016	0.050
										Mean:	0.000	0.000	0.000	0.000
										Sigma	0.038	0.032	0.037	0.041

How to fit?

1). Set pitch=0.0, yaw=-1.0, roll=0.0; adjust yaw such that <dBx>~=0.00 and <dBz>~=0.00, or abs(<dBx>)+abs(<dBz>) minimum.

2). Do not touch yaw. If roll is known to be -2.25 deg, set roll to -2.25, adjust pitch such that <dBy>~=0.00. If pitch is known, adjust roll then.

3). Adjust yaw and pitch a bit such that <dBx>=0.00, <dBy>=0.00 and <dBz>=0.00.

4). Using +/- Sigma as the upper and lower limit, adjust mean to match Sigma to estimate the uncertainties.

A). Fixed yaw and roll as values determined by 3), adjust ptich to let <dBy> match +/-Sigma, these 2 values are the min and max of pitch.

B). Fixed pitch and roll as values determined by 3), adjust yaw to let <dBx> and <dBz> match +/-Sigma, these 2 values are the min and max of yaw.

C). Fixed pitch and yaw as values determined by 3), adjust roll to let <dBy> match +/-Sigma, these 2 values are the min and max of roll.

Fit Probe Orientation Results

	pitch	pitch_min	pitch_max	yaw	yaw_min	yaw_max	roll	roll_min	roll_max
HL	0.939	0.821	1.056	-0.882	-0.982	-0.781	-2.250	-2.371	-2.129
HS	0.113	-0.179	0.405	-1.493	-1.643	-1.342	-2.250	-2.537	-1.961
VL	-0.066	-0.347	0.232	1.211	-2.081	4.167	-2.276	-2.437	-2.126
VS	1.327	0.690	1.907	-0.468	-2.886	2.146	-1.919	-2.122	-1.732
Suggested	0.58			-1.19			-2.25		
Error	0.66	Ι		0.43]		0.17]	

Summary:

1. HH large and small coils are 45 deg rotated. Their fields are in Bx and Bz directions, therefore they are sensitive to all 3 angles

2. Vertical large and small coils have the field mainly in vertical direction (By), therefore they are not sensitive to yaw angle.

3. For HH large and small coils, the solution for (pitch, roll) angles is not unique. I chose roll=-2.25 to determine pitch.

4. Vertical coils are not perfectly built as HH coils. Results from HH coils should be more reliable.

Create An Interactive TOSCA Model: 30deg

HB_BxBz_z-25+(VL+VS)

I_VL=2.6 I_VS=1.7 I_HL=5.163 I_HS=5.231 I_HB=1127.680 HLCC=0.0 HSCC=0.0

Posi	tion (cm)		Mag Fie	eld (G)		Gradient (G/cm)							Field Angle		
X	У	Z	B	Bx	By	Bz	Bxx	Вух	Bzx	Bxy	Вуу	Bzy	Bxz	Byz	Bzz	(deg)
0	0	20	26.297	0.094	-0.295	-26.295				0.015	-0.003	0.013	0.002	0.009	-0.002	179.795
0	0	12	26.263	0.069	-0.388	-26.260				0.013	0.000	0.011	0.000	0.003	0.000	179.850
0	0	4	26.260	0.066	-0.433	-26.257				0.010	0.000	0.007	0.000	0.000	0.000	179.857
0	0	-4	26.271	0.062	-0.444	-26.267				0.008	-0.002	0.004	-0.003	-0.002	0.005	179.864
0	0	-12	26.265	0.069	-0.431	-26.262				0.005	-0.003	0.000				179.849
0	0	-20	26.354	0.107	-0.405	-26.351				-0.002	-0.004	-0.002				179.766
0	10	20	26.170	0.244	-0.324	-26.167							0.005	0.007	0.001	
0	10	12	26.150	0.201	-0.390	-26.147							0.004	0.005	0.005	
0	10	4	26.192	0.168	-0.438	-26.187							0.003	0.002	0.005	
0	10	-4	26.231	0.143	-0.462	-26.227							0.003	-0.001	0.009	
0	10	-12	26.268	0.115	-0.465	-26.264										
0	10	-20	26.378	0.092	-0.442	-26.374										
5	0	20	26.261	0.129	-0.203	-26.260	0.007	0.018	0.007				0.006	0.010	0.001	
5	0	12	26.248	0.034	-0.308	-26.246	-0.007	0.016	0.003				-0.003	0.006	0.002	
5	0	4	26.279	0.040	-0.367	-26.276	-0.005	0.013	-0.004				-0.004	0.004	0.000	
5	0	-4	26.287	0.081	-0.408	-26.284	0.004	0.007	-0.003				0.002	0.002	0.004	
5	0	-12	26.287	0.098	-0.433	-26.283	0.006	0.000	-0.004							
5	0	-20	26.352	0.043	-0.448	-26.348	-0.013	-0.009	0.001							

Note: position (x, y, z) and field (Bx,By,Bz) are already flipped to Lab frame. (0,0,0) is the pivot.

8

Available Interactive TOSCA Models

Name

8.5deg_Model_1.797GeV.ods Ш 8.5deg_Model_1.797GeV.pdf 8.5deg_Model_2.129GeV.ods ШĬ 8.5deg_Model_2.129GeV.pdf 11.7deg_Model_1.760GeV.ods Шĩ 11.7deg_Model_1.760GeV.pdf æ 11.7deg_Model_2.148GeV.ods ШŤ 11.7deg_Model_2.148GeV.pdf æ 18deg_Model_5.6GeV.ods ШŤ 30deg_Model_2.6GeV.ods ШŤ 30deg_Model_2.6GeV.pdf 30deg_Model_3.4GeV.ods 30deg_Model_3.4GeV.pdf 30deg_Model_cmp2real.ods 30deg_Model_cmp2real.pdf Name 8.5deg_Model_D2N_1.797GeV.ods 8.5deg_Model_D2N_1.797GeV.pdf 8.5deg_Model_D2N_2.129GeV.ods 8.5deg_Model_D2N_2.129GeV.pdf 11deg_Model_MatchByCurrentDensity.ods

- 11deg_Model_MatchByCurrentDensity.pdf // 14.5deg_Model_MatchByCurrentDensity.ods
- 14.5deg_Model_MatchByCurrentDensity.pdf
- 18deg_Model_MatchByCurrentDensity.ods
- 18deg_Model_MatchByCurrentDensity.pdf

Index of /~jixie/A1N/mapping/models

	Name	Last modified	<u>Size</u>	Description
2	Parent Directory		_	
?	11deg Model MatchByCurrentDensity new VS Helm.oc	<u>ls</u> 08-Aug-2020 20:44	169K	
Ē	11deg Model MatchByCurrentDensity new VS Helm.pd	lf 08-Aug-2020 20:44	77K	
?	12.5deg Model.ods	08-Aug-2020 20:44	132K	
Ē	12.5deg Model.pdf	08-Aug-2020 20:44	74K	
?	18deg Model MatchByField.ods	08-Aug-2020 20:44	157K	
Ē	18deg Model MatchByField.pdf	08-Aug-2020 20:44	75K	
	A1NMaps/	03-Aug-2020 12:25	-	
	A1N field optimized/	03-Aug-2020 12:25	-	
	A1N field real/	03-Aug-2020 12:25	-	
?	CompareModel.ods	08-Aug-2020 20:44	426K	
Ē	CompareModel.pdf	08-Aug-2020 20:44	27 9 K	
	D2NMaps/	03-Aug-2020 12:25	-	
	D2N field optimized/	03-Aug-2020 12:25	-	
	D2N field real/	03-Aug-2020 12:25	-	
	Rotated HLHS.pdf	08-Aug-2020 20:44	27K	•

Apache/2.2.15 (Red Hat) Server at userweb.jlab.org Port 443

field mapping

J. Zhang

https://userweb.jlab.org/~jixie/A1N/mapping/models/ also available in work disk

Create Super TOSCA Model Map: python

Where is the maps located

The rotated TOSCA field maps for each single set of coils are stored in group dir: ifarm1901:/u/group/c-polhe3/Users/jixie/TOSCA/A1NMap ifarm1901:/u/group/c-polhe3/Users/jixie/TOSCA/D2NMap

Scripts to combine maps

Jixie provides python scrips to combine these 7 rotated individual maps (HB, HL, HS, VL, VS, HLCC and HSCC) into one map with each map scaled to the given current. These scrips will also make some plots of "Field vs Y|Z" and "Gradient vs Y|Z". These scrips are stored at ifarm1901:/u/group/c-polhe3/Users/jixie/TOSCA/Scripts

The output of these scripts (combined table, pdf files and figures) are stored at: ifarm1901:/u/group/c-polhe3/Users/jixie/TOSCA/Scripts/A1NOutput ifarm1901:/u/group/c-polhe3/Users/jixie/TOSCA/Scripts/D2NOutput

How to run these scripts to combine maps

First of all, the script require matplotlib, numpy, pandas modules. You need to install them before running it.

1) change "TableDir" to where the tables are located.

2) change "OutDir" as it is where to keep the output files

3) configure "Target_Currents_xxxx[4][7]" 2-D list. It contains 4 rows and 7 columns. The rows [0],[1],[2],[3] represent target polarization polarity of 0. 90, 180, and 270 deg, respectively. The structure of each row are the currents for these coils: HB,HL,HS,VL,VS,HLCC,HSCC.

4) Keep in mind that in D2N experiment, HS coil current in read back is in opposite

sign, VL and VS are switched.

In A1N experiment, HS coil current in read back is also in opposite sign.

Make sure you know these when you provide "Target_current" and be enough careful.

5) This script can make some plot using functions. For example "PlotGradientVsZ(xx,yy,figname)"

will plot the 9 gradients as a function of z at line (x=xx,y=yy).

User need to specify xx and yy locations and output figure name.

https://hallcweb.jlab.org/wiki/index.php/TOSCA_simulation_for_Pol_He3_Field

Figure from Super-TOSCA-Model: 30deg, 3.4GeV x- polarity

11

Figure from Super-TOSCA-Model: 30deg, 3.4GeV x- polarity

Currents for Compass Measurement

I HL=-1.0, I HS=1.0 <-- I HL was opposite

The following are the currents sent to Murchhana:

I VL=8.7, I VS=5.4,

Bx=-25q,

```
For 18deg
Bz=+25g
        I VL=5.8 I VS=4.0 I HL=-1 I HS=-1
         I VL=5.8 I VS=3.9 I HL=0 I HS=0
Bz=-25q
Bx=+25q I VL=5.8 I VS=4.6 I HL=0 I HS=0
         I VL=5.8 I VS=3.2 I HL=0 I HS=0
Bx=-25a
For 30 deq:
Bz=+25g
        I VL=4.5 I VS=3.5 I HL=0 I HS=0
Bz=-25q I VL=2.8 I VS=1.6 I HL=0 I HS=0
                                            <-- typo, I VL should be 2.3
Bx=+25g I VL=2.3 I VS=2.3 I HL=0 I HS=0
         I VL=4.5 I VS=2.8 I HL=0 I HS=0
Bx=-25q
For 12.5 deg (HB=7.5):
           I VL=8.7, I VS=5.9,
                                  I HL=0, I HS=0
Bz=+25g,
Bz=-25g,
           I VL=8.7, I VS=5.9,
                                  I HL=0, I HS=0
Bx=+25q, I VL=8.7, I VS=6.7,
                                  I HL=1.0, I HS=1.0
        I VL=8.7, I VS=5.4,
                                  I HL=1.0, I HS=1.0
Bx=-25a,
The following are the currents set during compass measurements:
For 18deg
        I VL=5.8 I VS=4.0 I HL=-1 I HS=1 <-- I HS was opposite
Bz=+25q
Bz=-25g
         I VL=5.8 I VS=3.9 I HL=0 I HS=0
Bx=+25g I VL=5.8 I VS=4.6 I HL=0 I HS=0
         I VL=5.8 I VS=3.2 I HL=0 I HS=0
Bx=-25q
For 30 deq:
Bz=+25g I VL=4.5 I VS=3.5 I HL=0 I HS=0
         I VL=2.8 I VS=1.6 I HL=0 I HS=0
                                            <-- typo, I VL should be 2.3
Bz=-25a
        I VL=2.3 I VS=2.3 I HL=0 I HS=0
Bx=+25q
         I VL=4.5 I VS=2.8 I HL=0 I HS=0
Bx=-25g
For 12.5 deg (HB=7.5):
         I VL=8.7, I VS=5.9,
                                  I HL=0, I HS=0
Bz=+25g,
            I VL=8.7, I VS=5.9,
Bz=-25q,
                                  I HL=0, I HS=0
Bx=+25g, I VL=8.7, I VS=6.7,
                                  I HL=-1.0, I HS=1.0 <-- I HL was opposite
```

13

+X: beam right (90 deg)

-X: beam left (270 deg)

+Z: downstream (0 deg)

-Z: upstream (180 deg)

In this file, +/-X are

definition above

different from M. Roy's

Compare to Compass Measurements Again

Field Angle Prediction

Prediction		12.5 deg a	nd 7.5GeV			18deg and	d 5.6GeV		30deg and 3.4GeV				
z location	Z+	Z-	Х+	Х-	Z+	Z-	Х+	Х-	Z+	Z-	X+	Х-	
20	-1.70	-179.70	90.46	-88.64	-0.11	-179.92	90.54	-88.71	-1.20	179.80	90.463	-89.36	
12	-1.56	-179.71	90.61	-89.03	-0.54	-179.91	90.66	-89.07	-1.13	179.85	90.617	-89.60	
4	-1.45	-179.77	90.61	-89.16	-1.02	-179.94	90.67	-89.21	-1.08	179.86	90.659	-89.70	
-4	-1.39	-179.82	90.47	-89.12	-1.54	-179.97	90.59	-89.22	-1.07	179.86	90.634	-89.75	
-12	-1.34	-179.88	90.14	-88.85	-2.07	-180.01	90.41	-89.09	-1.07	179.85	90.512	-89.71	
-20	-1.39	-179.99	89.79	-88.37	-2.68	-180.11	90.25	-88.75	-1.17	179.77	90.436	-89.53	
Linear Regr	ession												
Slope	-8.05E-03	7.20E-03	1.76E-02	-6.98E-03	6.42E-02	4.47E-03	8.17E-03	8.78E-04	-1.11E-03	5.40E-04	1.71E-03	4.40E-03	
Intercept	-1.47	-179.81	90.35	-88.86	-1.33	-179.98	90.52	-89.01	-1.12	179.83	90.55	-89.61	
R^2	0.803	0.943	0.665	0.115	0.997	0.824	0.555	0.003	0.096	0.041	0.072	0.206	

Interpolated JZ's Prediction

		12.5 deg a	nd 7.5GeV			18deg an	d 5.6GeV		30deg and 3.4GeV				
z location	Z+	Z-	Х+	X-	Z+	Z-	Х+	Х-	Z+	Z-	Х+	Х-	
-12	-1.37	-179.90	90.13	-88.78	-2.10	-180.03	90.42	-89.02	-1.11	179.82	90.53	-89.66	
0	-1.47	-179.81	90.35	-88.86	-1.33	-179.98	90.52	-89.01	-1.12	179.83	90.55	-89.61	
12	-1.57	-179.73	90.56	-88.94	-0.56	-179.92	90.62	-89.00	-1.14	179.84	90.57	-89.56	

MR's Measurement

		12.5 deg a	nd 7.5GeV			18deg an	d 5.6GeV		30deg and 3.4GeV				
z location	Z+	Z-	Х+	Х-	Z+	Z-	Х+	Х-	Z+	Z-	X+	Х-	
-12	0.62	179.97	88.70	-88.96	0.46	179.81	88.98	-89.35	0.22	179.65	89.69	-89.64	
0	0.49	180.10	88.81	-89.27	0.37	179.99	89.20	-89.71	0.17	179.82	89.80	-89.93	
12	0.46	180.19	88.45	-89.00	0.34	180.06	89.03	-89.57	0.19	179.96	89.78	-89.87	

diff=JZ-MR		12.5 deg a	nd 7.5GeV			18deg an	d 5.6GeV		30deg and 3.4GeV				
z location	Z+	Z-	Х+	Х-	Z+	Z-	X+	Х-	Z+	Z-	Х+	Х-	
-12	-2.00	0.13	1.43	0.18	-2.56	0.16	1.44	0.34	-1.33	0.18	0.84	-0.02	
0	-1.96	0.08	1.54	0.41	-1.70	0.04	1.33	0.70	-1.30	0.01	0.76	0.32	
12	-2.03	0.08	2.11	0.05	-0.90	0.02	1.59	0.57	-1.32	-0.13	0.79	0.32	
Average	-2.00	0.10	1.69	0.21	-1.72	0.07	1.45	0.54	-1.31	0.02	0.80	0.21	

Average All= 0.19

Z+ and X- angles are bad, why?

Using M.Roy's definition

field mapping

Why Z+ and X+ angles so bad?

Field Angle Prediction

Prediction		12.5 deg a	nd 7.5GeV			18deg an	d 5.6GeV		30deg and 3.4GeV				
z location	Z+	Z-	X+	Х-	Z+	Z -	X+	Х-	Z+	Z-	X+	Х-	
20	-0.87	179.45	91.53	-89.98	-0.87	179.45	91.53	-89.98	-0.87	179.45	91.53	-89.98	
18	-0.83	179.55	91.46	-90.07	-0.83	179.55	91.46	-90.07	-0.83	179.55	91.46	-90.07	
-3	-0.84	179.60	91.42	-90.14	-0.84	179.60	91.42	-90.14	-0.84	179.60	91.42	-90.14	
-5	-0.86	179.64	91.38	-90.20	-0.86	179.64	91.38	-90.20	-0.86	179.64	91.38	-90.20	
-18	-0.90	179.66	91.36	-90.24	-0.90	179.66	91.36	-90.24	-0.90	179.66	91.36	-90.24	
-20	-1.02	179.60	91.46	-90.16	-1.02	179.60	91.46	-90.16	-1.02	179.60	91.46	-90.16	
Linear Regr	ession												
Slope	2.62E-03	-3.66E-03	2.46E-03	4.75E-03	2.62E-03	-3.66E-03	2.46E-03	4.75E-03	2.62E-03	-3.66E-03	2.46E-03	4.75E-03	
Intercept	-0.88	179.58	91.44	-90.13	-0.88	179.58	91.44	-90.13	-0.88	179.58	91.44	-90.13	
R^2	0.428	0.683	0.478	0.734	0.428	0.683	0.478	0.734	0.428	0.683	0.478	0.734	

Interpolated JZ's Prediction

		12.5 deg a	nd 7.5GeV			18deg an	d 5.6GeV			30deg an	d 3.4GeV	
z location	Z+	Z-	X+	X-	Z+	Z-	X+	X-	Z+	Z-	X+	X-
-12	-0.91	179.62	91.41	-90.18	-0.91	179.62	91.41	-90.18	-0.91	179.62	91.41	-90.18
0	-0.88	179.58	91.44	-90.13	-0.88	179.58	91.44	-90.13	-0.88	179.58	91.44	-90.13
12	-0.85	179.53	91.47	-90.07	-0.85	179.53	91.47	-90.07	-0.85	179.53	91.47	-90.07

MR's Measurement

		12.5 deg a	nd 7.5GeV			18deg an	d 5.6GeV			30deg an	d 3.4GeV	
z location	Z+	Z+ Z- X+ X-				Z-	X+	X-	Z+	Z-	X+	Х-
-12	0.62	179.97	88.70	-88.96	0.46	179.81	88.98	-89.35	0.22	179.65	89.69	-89.64
0	0.49	180.10	88.81	-89.27	0.37	179.99	89.20	-89.71	0.17	179.82	89.80	-89.93
12	12 0.46 180.19 88.45 -89.00			-89.00	0.34	180.06	89.03	-89.57	0.19	179.96	89.78	-89.87

diff=JZ-MR		12.5 deg a	nd 7.5GeV			18deg an	d 5.6GeV			30deg an	d 3.4GeV	
z location	Z+	Z-	X+	Х-	Z+	Z-	X+	Х-	Z+	Z-	X+	X-
-12	-1.54	-0.34	2.70	-1.22	-1.38	-0.18	2.43	-0.83	-1.13	-0.03	1.72	-0.54
0	-1.37	-0.52	2.63	-0.86	-1.25	-0.41	2.24	-0.42	-1.06	-0.24	1.64	-0.20
12	-1.31	-0.66	3.02	-1.07	-1.19	-0.53	2.44	-0.50	-1.04	-0.43	1.69	-0.20
Average	-1.41	-0.51	2.78	-1.05	-1.27	-0.37	2.37	-0.58	-1.07	-0.23	1.68	-0.31
Δ.	orago All-	0 13										

Average All= 0.13

VL, VS, HB, HLCC, HSCC are all set to 0, only Bg + HL + HS are on

Compare to Bill's Measurements

- A 1-D probe was used to measure By at the z = 0 and 15 cm along the beam line for 180 and 270 degrees polarities. The SHMS was at 30 degrees and the HB was powered to 3.4 GeV/c.
- Log entry: https://logbooks.jlab.org/entry/3804362
- The super TOSCA model predicted the vertical field averaged along the beam line is 0.771 Gauss at 270 degrees polarity and -0.421 Gauss at 180 degrees polarity.

Error Analysis

- Accuracy of horizontal coils (HL + HS) \rightarrow < 0.36 Gauss
- Accuracy of vertical coils (VL + VS) → < 2%, or < 0.2 Gauss for 7A current
- Accuracy of horizontal correction coils (HLCC + HSCC) → < 0.13 Gauss for 2A current
- Accuracy of horizontal bender field (HB) → < 0.23 Gauss for 7.5GeV setting
- Accuracy of Bg $\rightarrow 0.13~Gauss$
- Accuracy of all \rightarrow 0.39 Gauss

D2N Field mapping Analysis Status

D:

result.txt - Notepad

- 1. Field mapping was done in z range from -10 to 30, in a gap of 10c. But probe orientation have changed
- 2. Existing single coil TOSCA maps do not cover this range. I need to re run TOSCA for each coil to generate new maps
- **3**. Repeat all analysis to determine NEW probe orientation??? (Maybe not..., too much work and very little to discover)
- 4. Determine TOSCA maps current for HL and HS coils
- 5. Adopt python code to create some Super-**TOSCA-Modles for D2N**

		-						
File	Edit	Format	View He	lp				
D:\w	iork\	mappin	g2020\HS	_7.4A				
	х	У	Z	Btot	Bx	By	Bz	Comment
-	10	0	-10	26.049	-0.365	-0.136	26.046	0
-	10	0	0	25.963	-0.252	-0.123	25.961	0
-	10	0	10	26.140	-0.266	-0.086	26.139	0
-	10	0	20	26.356	-0.437	-0.342	26.350	0
-	10	0	30	25.971	-0.827	-0.962	25.940	0
	0	0	-10	26.061	-0.368	-0.130	26.058	0
	0	0	0	26.038	-0.319	-0.154	26.035	0
	0	0	10	26.182	-0.359	-0.180	26.179	0
	0	0	20	26.248	-0.371	-0.436	26.242	0
	0	0	30	25.751	-0.355	-1.000	25.729	0
	0	10	-10	25.960	-0.376	-0.125	25.957	0
	0	10	0	25.990	-0.334	-0.180	25.987	0
	0	10	10	26.040	-0.366	-0.251	26.036	0
	0	10	20	25.929	-0.357	-0.318	25.924	0
	0	10	30	25.263	-0.345	-0.448	25.256	0
	0	25	-10	25.912	-0.383	-0.101	25.908	0
	0	25	0	25.920	-0.335	-0.113	25.918	0
	0	25	10	26.015	-0.368	-0.188	26.011	0
	0	25	20	25.970	-0.393	-0.034	25.967	0
	0	25	30	25.376	-0.361	0.391	25.371	0
	10	0	-10	26.092	-0.398	-0.168	26.088	0
	10	0	0	25.988	-0.394	-0.154	25.985	0
	10	0	10	26.201	-0.487	-0.133	26.196	0
	10	0	20	26.400	-0.352	-0.360	26.395	0
	10	0	30	25.963	0.078	-0.971	25.944	0
	0	0	30	25.688	-0.380	-0.987	25.666	check2
	Ø	0	30	25 747	-0 360	-0 984	25 726	chock3

Summary

- Helium3 target coils and field mapping devices are introduced.
- How to determine current for each single coil TOSCA map is introduced
- Detailed how to model background field and HB field
- Probe orientation is determined
- Interactive TOSCA models are created using excel
- Super-TOSCA-Models are created using python code
- Did comparison to compass measurement
- Compare to vertical field measurement
- Error analysis is done for each set of coils
- D2N field mapping analysis is on-going, can be finished in a few weeks
- Analysis tech-note for A1N is ready online (in overleaf). 46 pages! I still need to include some appendix.

Back Up

Coil definitions (1)

Coil definitions (2)

Experiment Setup

Definition of field directions

- Original raw data:
 - Position: looking downstream, x in to beam right, y is vertical up, z is pointing upstream.

(X=0,y=4,Z=25) is most close to the pivot

- Field: Bx is vertical up, By is beam left, Bz is upstream
- I have flipped position and field into Lab coordinate system in my report.

Determine TOSCA Map Current: HB

/home/jix	ie/DISK/w	ork/A1N/F		I_(A)= 1127.68									
TOSCA:	HB Coil w	ith Steel, I	P0=3.4 Ge	eV/c		Z_(off(cm) =	-2.00				sign=1	
P	osition (c	m)		Measu	rement			TOSC	A, HB co	il only			
x	У	z	B_data	Bx	Ву	+Bz	B_t	Bx	By	+Bz	Ratio	z_true	
0	-0.07	19.95	1.106	0.004	1.102	-0.093	1.076	-0.160	1.059	-0.096	1.028	17.95	
0	-0.06	17.95	1.039	0.010	1.038	-0.058	1.020	-0.154	1.004	-0.090	1.019	15.95	
0	0.01	-3.05	0.562	-0.001	0.562	-0.022	0.592	-0.104	0.581	-0.045	0.949	-5.05	
0	0.02	-5.05	0.503	-0.037	0.500	-0.034	0.564	-0.100	0.553	-0.042	0.893	-7.05	
0	0 0.06 -18.05 0.366 -0.040 0.362 -0.034 0.411 -0.079 0.403 -0.024 0.890											-20.05	
0	0.07	0.968	-22.05										
Note: Ratio = B_data / B_tosca, B_tosca_scaled = B_tosca * <ratio> average= 0.95</ratio>												> New_l= 1,177.430	
/bome/iivie/DISK/work/A1N/FieldAna/D2NMan_iivie/18deg_HB5n6_rotated_3_lines.tvtL_(A)=19													
TOSCA	HB Coil w	ith Steel	P0=5.6 Ge	eV/c		z (off(cm) =	-2.0				sign=1	
TOSCA:	HB Coil w	vith Steel,	P0=5.6 Ge	eV/c Measu	rement	z	off(cm) =	-2.0 TOSC	A. HB co	il only		sign=1	
TOSCA:	HB Coil w Position (c	vith Steel, m) z	P0=5.6 Ge	eV/c Measu Bx	rement By	z_(off(cm) =	-2.0 TOSC Bx	A, HB co By	il only +Bz	Ratio	sign=1	
TOSCA: P x 0	HB Coil w Position (c y -0.07	vith Steel, m) 19.95	P0=5.6 Ge B_data 2.358	eV/c Measu Bx -0.055	rement By 2.354	+Bz -0.115	off(cm) = B_t 2.053	-2.0 TOSC Bx -0.236	A, HB co By 2.029	il only +Bz -0.205	Ratio	sign=1 z_true 17.95	
TOSCA: P x 0 0	HB Coil w Position (c y -0.07 -0.06	<i>i</i> ith Steel, m) 19.95 17.95	P0=5.6 Ge B_data 2.358 2.214	eV/c Measu Bx -0.055 -0.059	rement By 2.354 2.211	+Bz -0.115 -0.108	off(cm) = B_t 2.053 1.930	-2.0 TOSC Bx -0.236 -0.226	A, HB co By 2.029 1.907	il only +Bz -0.205 -0.193	Ratio 1.149 1.147	sign=1 z_true 17.95 15.95	
TOSCA:	HB Coil w Position (c y -0.07 -0.06 0.01	ith Steel, m) 2 19.95 17.95 -3.05	P0=5.6 Ge B_data 2.358 2.214 1.205	eV/c Measu Bx -0.055 -0.059 -0.047	rement By 2.354 2.211 1.204	+Bz -0.115 -0.108 -0.027	B_t 2.053 1.930 1.043	-2.0 TOSC Bx -0.236 -0.226 -0.149	A, HB co By 2.029 1.907 1.028	il only +Bz -0.205 -0.193 -0.092	Ratio 1.149 1.147 1.156	sign=1 z_true 17.95 15.95 -5.05	
TOSCA: P x 0 0 0 0	HB Coil w Position (c y -0.07 -0.06 0.01 0.02	<i>i</i> th Steel, m) z 19.95 17.95 -3.05 -5.05	P0=5.6 Ge B_data 2.358 2.214 1.205 1.113	eV/c Measu Bx -0.055 -0.059 -0.047 -0.050	rement By 2.354 2.211 1.204 1.111	+Bz -0.115 -0.027 -0.039	B_t 2.053 1.930 1.043 0.988	-2.0 TOSC Bx -0.236 -0.226 -0.149 -0.143	A, HB co By 2.029 1.907 1.028 0.974	il only +Bz -0.205 -0.193 -0.092 -0.084	Ratio 1.149 1.147 1.156 1.127	sign=1 z_true 17.95 15.95 -5.05 -7.05	
TOSCA:	HB Coil w Position (c y -0.07 -0.06 0.01 0.02 0.06	ith Steel, z 19.95 17.95 -3.05 -5.05 -18.05	P0=5.6 Ge B_data 2.358 2.214 1.205 1.113 0.841	eV/c Measu Bx -0.055 -0.059 -0.047 -0.050 -0.026	rement By 2.354 2.211 1.204 1.111 0.840	+Bz -0.115 -0.108 -0.027 -0.039 0.005	B_t 2.053 1.930 1.043 0.988 0.701	-2.0 TOSC Bx -0.236 -0.226 -0.149 -0.143 -0.110	A, HB co By 2.029 1.907 1.028 0.974 0.691	il only +Bz -0.205 -0.193 -0.092 -0.084 -0.041	Ratio 1.149 1.147 1.156 1.127 1.199	sign=1 z_true 17.95 15.95 -5.05 -7.05 -20.05	
TOSCA:	HB Coil w Position (c y -0.07 -0.06 0.01 0.02 0.06 0.07	rith Steel, rm) 2 19.95 17.95 -3.05 -5.05 -18.05 -20.05	P0=5.6 Ge B_data 2.358 2.214 1.205 1.113 0.841 0.796	eV/c Measu Bx -0.055 -0.059 -0.047 -0.050 -0.026 -0.011	rement By 2.354 2.211 1.204 1.111 0.840 0.796	+Bz -0.115 -0.108 -0.027 -0.039 0.005 0.000	B_t 2.053 1.930 1.043 0.988 0.701 0.664	-2.0 TOSC Bx -0.236 -0.226 -0.149 -0.143 -0.110 -0.106	A, HB co By 2.029 1.907 1.028 0.974 0.691 0.655	il only +Bz -0.205 -0.193 -0.092 -0.084 -0.041 -0.036	Ratio 1.149 1.147 1.156 1.127 1.199 1.198	sign=1 z_true 17.95 15.95 -5.05 -7.05 -20.05 -22.05	
TOSCA: P x 0 0 0 0 0 0 0 0 0 0 0 0 0	HB Coil w Position (c y -0.07 -0.06 0.01 0.02 0.06 0.07 atio = B_d	<i>i</i> th Steel, <i>i</i>	P0=5.6 Ge B_data 2.358 2.214 1.205 1.113 0.841 0.796 sca, B_	eV/c Measu Bx -0.055 -0.059 -0.047 -0.050 -0.026 -0.011 tosca_sca	rement By 2.354 2.211 1.204 1.111 0.840 0.796 aled = B_	+Bz -0.115 -0.108 -0.027 -0.039 0.005 0.000 tosca * <	bff(cm) = B_t 2.053 1.930 1.043 0.988 0.701 0.664 Ratio>	-2.0 TOSC Bx -0.236 -0.226 -0.149 -0.143 -0.110 -0.106	A, HB co By 2.029 1.907 1.028 0.974 0.691 0.655	il only +Bz -0.205 -0.193 -0.092 -0.084 -0.041 -0.036 average=	Ratio 1.149 1.147 1.156 1.127 1.199 1.198 1.163	sign=1 z_true 17.95 15.95 -5.05 -7.05 -20.05 -22.05 > New_l= 1,614.323	
TOSCA: P x 0 0 0 0 0 0 Note: Ra	HB Coil w Position (c y -0.07 -0.06 0.01 0.02 0.06 0.07 atio = B_d	<i>i</i> th Steel, <i>z</i> 19.95 17.95 -3.05 -5.05 -18.05 -20.05 <i>i</i> tata / B_t c	P0=5.6 Ge B_data 2.358 2.214 1.205 1.113 0.841 0.796 bsca, B_ 1	W/c Measu Bx -0.055 -0.059 -0.047 -0.050 -0.026 -0.011 tosca_sca	rement By 2.354 2.211 1.204 1.111 0.840 0.796 aled = B_	+Bz -0.115 -0.108 -0.027 -0.039 0.005 0.000 tosca * <	B_t 2.053 1.930 1.043 0.988 0.701 0.664 Ratio >	-2.0 TOSC Bx -0.236 -0.226 -0.149 -0.143 -0.110 -0.106	A, HB co By 2.029 1.907 1.028 0.974 0.691 0.655	il only +Bz -0.205 -0.193 -0.092 -0.084 -0.041 -0.036 average=	Ratio 1.149 1.147 1.156 1.127 1.199 1.198 1.163	sign=1 z_true 17.95 15.95 -5.05 -7.05 -20.05 -22.05 > New_l=1,614.323	
TOSCA: P x 0 0 0 0 0 0 Note: Ra	HB Coil w Position (c y -0.07 -0.06 0.01 0.02 0.06 0.07 atio = B_d	rith Steel, rm) 2 19.95 17.95 -3.05 -5.05 -18.05 -20.05 lata / B_to	P0=5.6 Ge B_data 2.358 2.214 1.205 1.113 0.841 0.796 DSCa, B_	W/c Measu Bx -0.055 -0.059 -0.047 -0.050 -0.026 -0.011 tosca_sca	rement By 2.354 2.211 1.204 1.111 0.840 0.796 aled = B_	+Bz -0.115 -0.108 -0.027 -0.039 0.005 0.000 tosca * <	bff(cm) = B_t 2.053 1.930 1.043 0.988 0.701 0.664 Ratio>	-2.0 TOSC Bx -0.236 -0.226 -0.149 -0.143 -0.110 -0.106	A, HB co By 2.029 1.907 1.028 0.974 0.691 0.655	il only +Bz -0.205 -0.193 -0.092 -0.084 -0.041 -0.036 average=	Ratio 1.149 1.147 1.156 1.127 1.199 1.198 1.163	sign=1 z_true 17.95 15.95 -5.05 -7.05 -20.05 -22.05 > New_l= 1,614.323	
TOSCA: P x 0 0 0 0 0 0 Note: Ra /home/jix	HB Coil w Position (c y -0.07 -0.06 0.01 0.02 0.06 0.07 atio = B_d	rith Steel, rm) 2 19.95 17.95 -3.05 -5.05 -18.05 -20.05 lata / B_tc	P0=5.6 Ge B_data 2.358 2.214 1.205 1.113 0.841 0.796 DSCa, B_ ieldAna/A	W/c Measu Bx -0.055 -0.059 -0.047 -0.050 -0.026 -0.011 tosca_sca	rement By 2.354 2.211 1.204 1.111 0.840 0.796 aled = B_ xie/12p5d	+Bz -0.115 -0.108 -0.027 -0.039 0.005 0.000 tosca * <i eg_HB7.5</i 	bff(cm) = B_t 2.053 1.930 1.043 0.988 0.701 0.664 Ratio>	-2.0 TOSC Bx -0.236 -0.226 -0.149 -0.143 -0.110 -0.106	A, HB co By 2.029 1.907 1.028 0.974 0.691 0.655	il only +Bz -0.205 -0.193 -0.092 -0.084 -0.041 -0.036 average=	Ratio 1.149 1.147 1.156 1.127 1.199 1.198 1.163	sign=1 z_true 17.95 15.95 -5.05 -7.05 -20.05 -22.05 > New_l= 1,614.323 I_(A)= 2552.33	

								_				
Po	osition (c	m)		Measu	rement			TOSC	A, HB co	il only		
x	У	z	B_data	Bx	By	+Bz	B_t	Bx	By	+Bz	Ratio	z_true
0	-0.07	19.95	3.020	-0.049	3.004	-0.305	2.635	-0.307	2.575	-0.467	1.146	17.95
0	-0.06	17.95	2.850	-0.038	2.832	-0.319	2.462	-0.295	2.404	-0.444	1.157	15.95
0	0.01	-3.05	1.502	-0.012	1.495	-0.145	1.244	-0.197	1.200	-0.263	1.207	-5.05
0	0.02	-5.05	1.400	-0.015	1.393	-0.133	1.171	-0.190	1.128	-0.250	1.195	-7.05
0	0.06	-18.05	0.992	0.016	0.988	-0.090	0.795	-0.150	0.760	-0.179	1.248	-20.05
0	0.07	-20.05	0.965	0.000	0.961	-0.085	0.746	-0.144	0.713	-0.169	1.293	-22.05
Note: Ra	tio = B d	ata / B to	sca. B	tosca sca	aled = B	tosca * <	Ratio>			average=	1.208	> New I= 2.113.426

Note: Ratio = B_data / B_tosca, B_tosca_scaled = B_tosca * <Ratio>

average= 1.208

Determine TOSCA Map Current: HLHS

Po	sition (cm)		TOSCA, HS	S coil, J=-2	B		TOSCA, HL	. coil,J=+2	6
x	У	z	B_data	Bx	By	+Bz	B_t	Bx	By	+Bz
0	0	20	17.953	12.624	0.061	-12.765	18.702	-13.162	-0.010	-13.286
0	0	18	17.911	12.592	0.051	-12.738	18.674	-13.138	-0.017	-13.271
0	0	-3	17.787	12.484	0.030	-12.670	18.621	-13.062	-0.051	-13.271
0	0	-5	17.793	12.492	0.031	-12.670	18.630	-13.069	-0.054	-13.277
0	0	-18	17.920	12.616	0.008	-12.726	18.730	-13.167	-0.074	-13.321
0	0	-20	17.970	12.652	-0.002	-12.761	18.762	-13.193	-0.080	-13.340
	Calculated J_HS= -28.7420					Calcula	ted J_HL=	25.6283	+ - 0.20	

dBx ~= sin(yaw)*Bz0

dBy ~= sin(roll)*Bx0

Fitted J_HS=-28.7420 +|- 0.20

Fitted J_HL= 25.6283 +|- 0.19

Po	sition (d	cm)	Rotated	to Lab: Me	asuremen	t (0 deg)	TOSC	A, -HL_sca	aled - HS_s	scaled	m	easureme	ent - TOS	CA	
x	У	z	B	Bx	By	+Bz	в	Bx	By	+Bz	dBtot	dBx	dBy	dBz	Yaw
0	0	20	25.760	-0.222	-0.041	25.759	26.199	0.015	-0.053	26.199	-0.44	-0.24	0.01	-0.44	-0.52
0	0	18	25.697	-0.224	-0.066	25.696	26.157	0.024	-0.036	26.157	-0.46	-0.25	-0.03	-0.46	-0.54
0	0	-3	25.641	-0.175	-0.165	25.640	26.087	0.060	0.019	26.087	-0.45	-0.23	-0.18	-0.45	-0.52
0	0	-5	25.652	-0.143	-0.213	25.651	26.093	0.059	0.021	26.093	-0.44	-0.20	-0.23	-0.44	-0.44
0	0	-18	25.809	-0.238	-0.181	25.808	26.194	0.028	0.065	26.194	-0.38	-0.27	-0.25	-0.39	-0.58
0	0	-20	25.874	-0.196	-0.170	25.873	26.249	0.017	0.081	26.248	-0.37	-0.21	-0.25	-0.38	-0.47
			25.74				26.16			Mean:	-0.42	-0.23	-0.16	-0.43	-0.51

Po	sition (o	em)	Rotated t	o Lab: Mea	surement	(180 deg)	TOSC	A, HL_sca	led + HS_s	caled	m	easureme	ent - TOS	CA	
x	У	z	В	Bx	Ву	+Bz	в	Bx	Ву	+Bz	dBtot	dBx	dBy	dBz	Yaw
0	0	20	26.076	0.173	-0.157	-26.075	26.199	-0.015	0.053	-26.199	-0.12	0.19	-0.21	0.12	-0.41
0	0	18	26.038	0.170	-0.146	-26.037	26.157	-0.024	0.036	-26.157	-0.12	0.19	-0.18	0.12	-0.43
0	0	-3	25.889	0.107	-0.076	-25.888	26.087	-0.060	-0.019	-26.087	-0.20	0.17	-0.06	0.20	-0.37
0	0	-5	25.885	0.087	-0.023	-25.884	26.093	-0.059	-0.021	-26.093	-0.21	0.15	0.00	0.21	-0.32
0	0	-18	26.030	0.152	-0.071	-26.029	26.194	-0.028	-0.065	-26.194	-0.16	0.18	-0.01	0.16	-0.40
0	0	-20	26.102	0.132	-0.094	-26.102	26.249	-0.017	-0.081	-26.248	-0.15	0.15	-0.01	0.15	-0.32
			26.00				26.16			Mean:	-0.16	0.17	-0.08	0.16	-0.37

Po	sition (d	em)	Rotated	to Lab: Me	asurement	: (90 deg)	TOSC	CA, HL_sca	led - HS_s	caled	m	easureme	ent - TOS	CA	
x	У	z	B	Bx	By	+Bz	В	Bx	By	+Bz	dBtot	dBx	dBy	dBz	Roll
0	0	20	25.930	25.930	-0.011	-0.146	25.932	25.932	0.072	-0.007	0.00	0.00	-0.08	-0.14	-0.18
0	0	18	25.871	25.871	0.003	-0.114	25.876	25.876	0.069	0.006	0.00	0.00	-0.07	-0.12	-0.15
0	0	-3	25.613	25.612	0.106	-0.079	25.690	25.690	0.081	0.075	-0.08	-0.08	0.02	-0.15	0.05
0	0	-5	25.628	25.628	0.097	-0.117	25.705	25.705	0.085	0.081	-0.08	-0.08	0.01	-0.20	0.03
0	0	-18	25.868	25.868	0.078	-0.074	25.929	25.929	0.081	0.067	-0.06	-0.06	0.00	-0.14	-0.01
0	0	-20	25.932	25.932	0.101	-0.129	25.992	25.992	0.077	0.050	-0.06	-0.06	0.02	-0.18	0.05
			25.81				25.85			Mean:	-0.05	-0.05	-0.02	-0.16	-0.03

Modeling the HB Field: 12.5 deg

This is how I deal with HB field at various z location

All angle settings will repeat this process

Fit Probe Orientation by VL

Vertical Large Coil Only

/home/jixie/DISK/work/A1N/mapping/ByCC/ByCC Large 6.4A new/result rot.txt

TOSCA: Vertical Large Coil with Steel 1-284/cm^2

I (A)=-6.52 sign=-1

range=B3:H8

old J=-28.000 --> New J=29.059 --> New I=6.282

Pos	ition (cm)		Measu	rement			TOSC	A, VL coi	l only	
x	у	Z	B_data	Bx	Ву	+Bz	B_t	Bx	By	+Bz	Ratio
0	-0.07	19.95	7.936	0.297	7.914	-0.511	7.673	-0.014	-7.660	0.439	1.034
0	-0.06	17.95	7.868	0.302	7.848	-0.48	7.597	-0.013	-7.585	0.424	1.036
0	0.01	-3.05	7.334	0.281	7.324	-0.269	7.084	-0.007	-7.078	0.282	1.035
0	0.02	-5.05	7.313	0.291	7.303	-0.243	7.055	-0.006	-7.050	0.277	1.037
0	0.06	-18.1	7.221	0.316	7.204	-0.381	6.922	-0.004	-6.913	0.362	1.043
0	0.07	-20.1	7.193	0.292	7.174	-0.436	6.904	-0.003	-6.892	0.401	1.042
Note:	Note: Ratio = B data / B tosca, B tosca scaled = B tosca * <ratio> average=</ratio>										

Note: Ratio = B_data / B_tosca, B_tosca_scaled = B_tosca ^ <Ratio>

Rotate back to the hall coordinate system.

deg:	pitch=-	-0.066	yaw= <mark>1.211</mark>	roll= -2.276
rad:	gamma=	0.00115	beta= 0.02114	alpha= -0.03972
Rotation matrix:				
1	0.9990	-0.0397	-0.0211\	
R^-1=	0.0397	0.9992	-0.0012	
i	0.0212	0.0003	0.9998/	

	Final	Result	
	optimized	min	max
pitch	-0.066	-0.347	0.232
yaw	1.211	-2.081	4.167
roll	-2.276	-2.437	-2.126

Pos	sition (cm)		Rotate	d Data			Scaled	TOSCA		Rotated_Data - Scaled_TOSCA			
X	y y	Z	Btot	Bx	By	+Bz	Btot	Bx	By	+Bz	dBtot	dBx	dBy	dBz
0	0	20	7.936	-0.007	7.920	-0.502	7.963	0.015	7.950	-0.456	-0.027	-0.021	-0.030	-0.047
0	0	18	7.868	0.000	7.854	-0.471	7.884	0.013	7.872	-0.440	-0.016	-0.013	-0.018	-0.031
0	0	-3	7.334	-0.004	7.330	-0.261	7.352	0.007	7.346	-0.293	-0.017	-0.012	-0.016	0.032
0	0	-5	7.313	0.006	7.309	-0.235	7.322	0.006	7.317	-0.287	-0.009	0.000	-0.008	0.053
0	0	-18	7.221	0.038	7.211	-0.372	7.184	0.004	7.174	-0.376	0.037	0.034	0.037	0.004
0	0	-20	7.193	0.016	7.180	-0.427	7.165	0.003	7.153	-0.416	0.028	0.013	0.028	-0.011
										Mean:	-0.001	0.000	-0.001	0.000
										Sigma:	0.026	0.020	0.027	0.038

How to fit?

1. Set pitch=0.0, yaw=0.0; adjust roll such that <dBy>~=0.00 or minimum. Adjust yaw to let <dBx>~=0.00. Then adjust pitch to let <dBz>~=0.00. (<dBx> is sensitive to yaw and roll. <dBy> is sensitive to roll. <dBz> is sensitive pitch.)

Using +/- Sigma as the upper and lower limit, adjust mean to match Sigma to estimate the uncertainties.

A). Fixed yaw and roll as values determined by 1), adjust ptich to let <dBz> match +/-Sigma, these 2 values are the min and max of pitch.

B). Fixed pitch and roll as values determined by 3), adjust yaw to let <dBx> match +/-Sigma, these 2 values are the min and max of yaw.

C). Fixed pitch and yaw as values determined by 3), adjust roll to let <dBx> match +/-Sigma, these 2 values are the min and max of roll.

Accuracy of the Main Holding Field (90deg)

The accuracy of Btot is about 0.31 gauss

Positi	on (c	m)		Mag Fie	eld (G)		Po	Position (cm) Mag Field (G)							Mag Fiel	d (G)		
х	У	z	В	Ву	Bx	Bz		k y	z	Btot	By	Bx	+Bz	· .	В	By	Bx	Bz
0	0	20	26.147	-1.181	26.113	0.610	(0 0	20	25.932	-1.025	25.907	0.448		0.305	-0.156	0.206	0.162
0	0	18	26.088	-1.209	26.053	0.631	(0 C	18	25.872	-1.01	25.848	0.479		0.324	-0.199	0.205	0.152
0	0	-3	25.792	-1.098	25.759	0.679	(0 C	-3	25.614	-0.897	25.593	0.509		0.311	-0.201	0.166	0.170
0	0	-5	25.805	-1.080	25.773	0.666	(0 C	-5	25.629	-0.906	25.609	0.472		0.308	-0.174	0.164	0.194
0	0	-18	26.032	-1.092	26.000	0.714	(0 0	-18	25.869	-0.935	25.847	0.52		0.292	-0.157	0.153	0.194
0	0	-20	26.106	-1.118	26.073	0.685	(0 0	-20	25.934	-0.915	25.913	0.466		0.339	-0.203	0.160	0.219
0	2	20	26.086	-1.154	26.054	0.614	(2 2	20	25.886	-1.012	25.862	0.45		0.289	-0.142	0.192	0.164
0	2	18	26.031	-1.150	25.998	0.626	- (2 2	18	25.833	-0.989	25.809	0.489		0.284	-0.161	0.189	0.137
0	2	-3	25.794	-1.086	25.762	0.668	(2 2	-3	25.613	-0.902	25.593	0.504		0.300	-0.184	0.169	0.164
0	2	-5	25.800	-1.070	25.769	0.690	(2 2	-5	25.635	-0.91	25.614	0.503		0.291	-0.160	0.155	0.187
0	2	-18	25.976	-1.080	25.943	0.711	(2 2	-18	25.811	-0.917	25.789	0.538		0.284	-0.163	0.154	0.173
0	2	-20	26.048	-1.070	26.016	0.724	(2 2	-20	25.88	-0.935	25.858	0.492		0.311	-0.135	0.158	0.232
2	0	20	26.133	-1.205	26.095	0.719		2 0	20	25.909	-1.056	25.882	0.528		0.322	-0.149	0.213	0.191
2	0	18	26.055	-1.205	26.017	0.711		2 0	18	25.833	-1.058	25.805	0.545		0.307	-0.147	0.212	0.166
2	0	-3	25.796	-1.035	25.766	0.700		2 0	-3	25.608	-0.884	25.588	0.496		0.310	-0.151	0.178	0.204
2	0	-5	25.802	-1.058	25.772	0.676		2 0	-5	25.627	-0.866	25.607	0.492		0.313	-0.192	0.165	0.184
2	0	-18	26.022	-1.140	25.988	0.676		2 0	-18	25.848	-0.968	25.826	0.457		0.323	-0.172	0.162	0.219
2	0	-20	26.089	-1.187	26.055	0.611		2 0	-20	25.911	-0.988	25.888	0.42	.]	0.323	-0.199	0.167	0.191
			predio	ct						real					1	oredic	t - rea	al

- Field measured for Bx coil = 7.077 A
- Field measured for Bz coil = -7.169 A
- Predicted fields for Bx coil = 5.163 A, Bz coil = -5.231 A
- compare prediction to real measurement

direction

x+

<dB>

0.305

0.015

Mean:

Sigma:

<dBy>

-0.169

0.022

<dBx>

0.176

0.021

<dBz>

0.183

0.025

Accuracy of the Main Holding Field (all 4 polarities)

The accuracy of Btot is about 0.36 gauss

Helmholtz coil prediction offsets

predict – real

direction	<db></db>	<dby></dby>	<dbx></dbx>	<dbz></dbz>
z+	0.357	0.146	0.236	0.224
Z-	0.203	0.092	-0.165	-0.072
x+	0.305	-0.169	0.176	0.183
x-	0.312	0.200	-0.175	-0.163

Helmholtz coil prediction Standard Deviation

predict – real

direction	<db></db>	<dby></dby>	<dbx></dbx>	<dbz></dbz>
z+	0.029	0.030	0.016	0.029
Z-	0.025	0.034	0.017	0.033
x+	0.015	0.022	0.021	0.025
х-	0.020	0.025	0.015	0.053

Accuracy of the Horizontal Correction Coils

The accuracy of Btot is about 0.13 gauss

Horizontal correction coils prediction offsets

product rota				
direction	<db></db>	<dby></dby>	<dbx></dbx>	<dbz></dbz>
++	0.128	-0.021	0.085	-0.093
+-	0.070	0.066	-0.004	0.023
-+	0.118	-0.108	0.046	0.009
	0.096	-0.072	-0.030	-0.056

predict - real

Horizontal correction coils prediction Standard Deviation

predict	_	real
---------	---	------

direction	<db></db>	<dby></dby>	<dbx></dbx>	<dbz></dbz>
++	0.044	0.039	0.022	0.053
+-	0.023	0.027	0.019	0.021
-+	0.019	0.031	0.025	0.036
	0.023	0.017	0.020	0.021

- Field measured for BxCC at +/-2.0A
- Field measured for BzCC at +/-2.0A
- Field measured for BxCC and BzCC both coils on (at +/- 2.0A) for 4 polarities: ++,+-,-+,--
- Predicted fields for all these 4 polarities: ++,+-,-+,--
- Compare prediction to real measurements

Accuracy of the HB Field

The accuracy of Btot is about 0.24 gauss for 7.5GeV setting

/home/jixi	ie/DISK/w	ork/A1N/F	ieldAna/A	1NMap_ji	xie/12p5d	leg_HB7.5	5_June_J1	L4724_rota	ated_3_lir	nes.txt		I_(A)= 2552.33
TOSCA:	HB Coil w	ith Steel, I	P0=7.5 Ge	eV/c		Z_(off(cm) =	-2.00				sign=1
Po	osition (c	m)		Measu	rement			TOSC	A, HB co	il only		
x	У	z	B_data	Bx	By	+Bz	B_t	Bx	By	+Bz	Ratio	z_true
0	-0.07	19.95	3.020	-0.049	3.004	-0.305	2.635	-0.307	2.575	-0.467	1.146	17.95
0	-0.06	17.95	2.850	-0.038	2.832	-0.319	2.462	-0.295	2.404	-0.444	1.157	15.95
0	0.01	-3.05	1.502	-0.012	1.495	-0.145	1.244	-0.197	1.200	-0.263	1.207	-5.05
0	0.02	-5.05	1.400	-0.015	1.393	-0.133	1.171	-0.190	1.128	-0.250	1.195	-7.05
0	0.06	-18.05	0.992	0.016	0.988	-0.090	0.795	-0.150	0.760	-0.179	1.248	-20.05
0	0.07	-20.05	0.965	0.000	0.961	-0.085	0.746	-0.144	0.713	-0.169	1.293	-22.05
Note: Ra	tio = B_d	ata / B_to	sca, B	tosca_sca	aled = B	tosca * <	Ratio>			average=	1.208	> New_l= 2,113.426

Rotate back to the hall coordinate system.

deg:		pitch=	0.580	yaw= -1.190	roll= -2.250
rad:		gamma=	0.01012	beta= -0.02077	alpha= -0.03927
Rotation matrix:					
	1	0.9990	-0.0393	0.0208 \	
	R^-1=	0.0390	0.9992	0.0101	
	I I	-0.0211	-0.0093	0.9997 /	

P	osition (c	m)		Rotated Data				Scaled TOSCA				Rotated_Data - Scaled_TOSCA			
X	y y	z	Btot	Btot Bx By +Bz				Bx	By	+Bz	dBtot	dBx	dBy	dBz	
0	0	17.95	3.020	-0.173	2.997	-0.332	3.183	-0.370	3.110	-0.565	-0.163	0.197	-0.114	0.233	
0	0	15.95	2.850	-0.156	2.825	-0.344	2.974	-0.356	2.903	-0.537	-0.124	0.201	-0.078	0.192	
0	0	-5.05	1.502	-0.074	1.492	-0.159	1.503	-0.238	1.449	-0.318	-0.001	0.164	0.042	0.159	
0	0	-7.05	1.399	-0.072	1.390	-0.146	1.415	-0.229	1.363	-0.302	-0.015	0.157	0.027	0.157	
0	0	-20.05	0.992	-0.025	0.987	-0.100	0.960	-0.181	0.918	-0.216	0.032	0.156	0.069	0.116	
0	0	-22.05	0.965	-0.039	0.959	-0.094	0.901	-0.174	0.861	-0.204	0.063	0.135	0.099	0.110	
										Mean:	-0.035	0.168	0.008	0.161	
										Sigma:	0.089	0.026	0.085	0.046	

-0.454

-0.426

-0.403

-0.448

-0.413

-0.414

-0.391

-0.402

-0.416

30

43

45

-0.409

-0.372

-0.372

Background in By

- By changes about 0.06 gauss from day to day
- By has z dependence
- Background on 10/19 was used in analysis

Bx and Bz Background

The accuracy of Btot is about 0.13 gauss

z	1019	1021	1023	1028
20	-0.067	-0.082	0.102	-0.008
18	-0.089	-0.105	0.088	-0.032
-3	-0.145	-0.146	0.04	-0.046
-5	-0.143	-0.147	0.051	-0.055
-18	-0.118	-0.165	-0.001	-0.081
-20	-0.118	-0.181	-0.042	-0.062

z	1019	1021	1023	1028
20	-0.275	-0.308	-0.218	-0.261
18	-0.294	-0.359	-0.216	-0.289
-3	-0.352	-0.367	-0.247	-0.285
-5	-0.325	-0.354	-0.208	-0.302
-18	-0.282	-0.358	-0.257	-0.317
-20	-0.282	-0.406	-0.286	-0.302

- Bx on 10/23 is about 0.15 larger than 10/19 or 10/21. Most data are taken before 10/23.
- If do not consider 10/23 data, **Bx changes about 0.1 gauss, Bz changes about 0.06 gauss**
- Bx and Bz both have z dependence

fiel Backing ound on 10/19 was used in analysis Zhang

34

Where do we optimize the field?

• field gradient at the beam line is optimized

What data have been taken?

- Background (4 times at different days)
- Calibrate to 1-D hall probe, also did zero calibration at the end
- Calibration of single coils:
 - Helmholtz Coils only: Bx(+/-), Bz(+/-), Bx(+/-)_N_Bz(+/-)
 - Vertical coils: VL, VS, VS_N_VL
 - Horizontal correction coils: HS(+/-), HL(+/-), HS(+/-)_N_HL(+/-)
- 30 deg
 - HB only
 - HB + target field on (4 polarities)
 - HB + target field on (4 polarities) + Vertical Coils
 - HB + target field on (4 polarities) + Vertical Coils + horizontal coils
- 12.5 deg
 - HB only
 - HB + target field on (4 polarities)
 - HB + target field on (4 polarities) + Vertical Coils
 - HB + target field on (4 polarities) + Vertical Coils + horizontal coils
- 18 deg
 - HB only
 - HB + target field on (4 polarities) + Vertical Coils + horizontal coils

Adjustment in Pitch Angle

On 10/23, Survey group adjusted the target platform by changing the pitch angle such that one reference point is moving vertical down by 3 mm. Here is the summary of the adjustment. Notes was taken during telephone conversation with Chris Gould .

- The ideal Helmholtz coil center is (0,150.01,0) mm, the actual center is (-0.55, 146.41, 0.3) mm, in Lab coordinate system.
- The ideal position of the reference point which has been adjusted is (-3.0,-862.96, 838.06) mm in the target coil coordinate system.
- The actual position of the reference point after adjustment is (-3.55, -866.56, 838.36) mm, in the target coil coordinate. The distance of the reference to target center is 1202.94 mm.

Accuracy of the Horizontal Correction Coils, 4A

Horizontal correction coils prediction offsets

predict - real

direction	<db></db>	<dby></dby>	<dbx></dbx>	<dbz></dbz>
++ (4A predict - 4A real)	0.096	-0.077	-0.045	-0.037
++ (4A real - 2A real)	0.151	-0.052	-0.014	-0.141
(4A predict - 4A real)	0.132	-0.110	-0.042	-0.060
(4A real - 2A real)	0.064	-0.062	0.000	-0.014

Horizontal correction coils prediction Standard Deviation

predict – real	
----------------	--

direction	<db></db>	<dby></dby>	<dbx></dbx>	<dbz></dbz>
++ (4A predict - 4A real)	0.028	0.026	0.018	0.023
++ (4A real - 2A real)	0.021	0.032	0.012	0.023
(4A predict - 4A real)	0.033	0.025	0.016	0.025
(4A real - 2A real)	0.013	0.013	0.013	0.021

- Field measured for BxCC at +/-4.0A and +/-2.0A
- Field measured for BzCC at +/-4.0A and +/-2.0A
- Field measured for BxCC and BzCC both coils on (at +/- 4.0A and +/-2.0A) for 2 polarities: ++,--
- Predicted fields for all these 2 polarities: ++,--

- Compare predictions to real measurements, also compare 2A to 4A measurements field mapping J. Zhang

38