Long-range two-particle correlations in DIS with CLAS12

Sebouh Paul University of California, Riverside

CLAS Collaboration Meeting March 3, 2021

Intro

- Correlations between particles with large rapidity separation can be used to study correlations that occur early on in a reaction.
- Here we investigate the correlations in the azimuthal separation $\Delta \phi$ between pairs of particles produced in SIDIS reactions in CLAS12.
- Similar studies have been investigating:
 - pp, pPb, and PbPb at the LHC¹ and RHIC.
 - ▶ e⁺e⁻ at ALEPH (recently published)²
 - ep at HERA (ongoing analysis)³
- Large acceptance at CLAS12 makes it well suited for analogous studies

¹ JHEP 09, 091 (2010), 1009.4122; Phys. Lett. B718, 795 (2013), 1210.5482; Phys. Rev. Lett. 116, 172302 (2016), 1510.03068

²https://doi.org/10.1016/j.nuclphysa.2018.09.018

^{3 &}quot;Search for collectivity in e-p collisions with H1", Submitted to Initial Stages 2021 Israel 💷 👌 🚊 🔗 🛇 😋 2/25

Intro (continued)

- A common feature is a peak at ∆φ = π at both large and small rapidity separation.
- Another possible feature is a secondary peak (the "ridge") at ∆φ = 0, persisting at large rapidity separation.
 - A ridge has been observed in CMS at high track multiplicity, and predicted by some theoretical models
 - Upper limits have been set/are being set at ALEPH and HERA.

"Ridge" Analysis Upper Limits (Existing data for small systems)

⁴https://doi.org/10.1016/j.nuclphysa.2018.09.018

⁵ "Search for collectivity in e-p collisions with H1",

Submitted to Initial Stages 2021, Israel, 10-15 January, 2021 The American Stages 4/25

Ridge-yield existing limits

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ≣ のQで 5/25

Data/Event Selection (1/2)

- DSTs from RGA fall 2018, entire inbending dataset (outbending will be included later)⁶
- Tuples made using the following cuts:
- Electron ID:
 - EC fraction: $E_{\rm EC}/p > 0.17$
 - PCAL energy > 0.07 GeV
 - ▶ Vertex position: between −13 and 12 mm
 - > 2 photoelectrons in HTCC.
 - DC and PCAL fiducial.
 - The particle's charge is negative.
- Electron kinematics (DIS):
 - $Q^2 > 1 \,\,{
 m GeV^2}/c^2$
 - $W > 2 \text{ GeV}/c^2$
 - $y_e \equiv \nu/E < 0.85$

⁶/lustre/expphy/cache/clas12/rg-a/production/recon/fall2018/

Data/Event Selection (2/2)

- Hadron ID:
 - ▶ |chi2pid| < 2.5
 - $|\Delta v_z| < 20 \text{ mm}$
 - $|\Delta t_{
 m corr}| < 0.3$ ns
 - fiducial cuts in DC.
- ► Dihadron events require a high-z pion as the "trigger" particle: $z \equiv E_h/\nu > 0.4$.
- For analysis, we require additional cuts:
 - $p_t > 0.3$ GeV for both particles in CM frame.
 - for πp events, remove events in which $m_X(ep \rightarrow e\pi X) < 1.665 \text{ GeV}$ (this corresponds to the Δ baryon mass, plus ≈ 3 sigma resolution)

Definitions

- Trigger particle: a high z pion. Not to be confused with event trigger
- Results are presented in the CM frame:
 - rotated so that outgoing electron is in xz plane, and z axis is along momentum transfer
 - boosted so that the proton+virtual photon are at rest (CM).
 - $\Delta \phi$ difference in azimuth between hadrons in this frame

•
$$\Delta y$$
 difference in rapidity $\left(y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z}\right)$

Event mixing

- Event mixing is performed to correct for pair-acceptance effects and produce correlation functions
- Each trigger is paired with one of the hadrons in a different event.
- The kinematic variables that depend on the virtual photon kinematics are recalculated.
- Likewise difference variables $\Delta \phi$ and Δy are recalculated.

◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ > ○ Q ○ 9/25

Same/mixed event yields and correlation function

- Same event yield: $S(\Delta \phi, \Delta y) = \frac{1}{N_{\text{trig}}} \frac{dN^{\text{same}}}{d\Delta \phi d\Delta y}$
- Mixed event yield: $M(\Delta \phi, \Delta y) = \frac{1}{N_{\text{tot}}^{\text{mix}}} \frac{dN^{\text{mix}}}{d\Delta \phi d\Delta y}$
- Correlation function: $C(\Delta \phi, \Delta y) = \frac{S(\Delta \phi, \Delta y)}{M(\Delta \phi, \Delta y)}$
- Correlation function (1D projection): $C(\Delta \phi) = \frac{\int_{\Delta y_{\min}}^{\Delta y_{\max}} d\Delta y[S(\Delta \phi, \Delta y)]}{\int_{\Delta y_{\min}}^{\Delta y_{\max}} d\Delta y[M(\Delta \phi, \Delta y)]}$
 - ▶ for this analysis, we use $1.5 < \Delta y < 2.5$ for our projection range.

Correlation function from πp events

Correlation function from πp events (Monte Carlo)

<ロト < 母 ト < 臣 ト < 臣 ト 三 の へ C 12/25

Correlation function from $\pi\pi$ events

Correlation function from $\pi\pi$ events (Monte Carlo)

<ロト < @ ト < 注 > < 注 > うへで 14/25

Fourier transform of correlation function and V_2

- A Fourier transform is performed on the correlation function: $C(\Delta \phi) = A(1 + 2\sum_{n} V_n \cos(n\Delta \phi))$
- These Fourier components can in principle be compared with structure-function predictions.
- V₂ is plotted below:

Ridge-yield procedure⁷

Ridge-yield at CLAS12

- Without binning any other variables, the yield for our CLAS12 data is zero, since the fit has a minimum at Δφ = 0 (see below) so the integration range vanishes.
- ► However, we can separate our data into bins by kinematics and/or n_{tracks} in order to set exclusion regions

◆□ → ◆□ → ◆ ■ → ▲ ■ → ○ へ ○ 17/25

Correlation functions at CLAS-12 vs ntracks

No ridge found... use bootstrap to set upper limits...

Add CLAS-12 to ridge-yield search: Small-Systems Frontier

▲□▶ ▲□▶ ▲ 臣▶ ▲ 臣▶ 臣 の Q @ 19/25

Polarization asymmetry

▶ We are also investigating the asymmetry of the same-event yield with respect to the beam helicity; $A = \frac{S_+ - S_-}{S_+ + S_-}/P_e$

20/25

Conclusions

- Azimuthal correlations in rapidity-separated πp and ππ pairs are a useful tool to study structure and fracture phenomena
- Fourier decomposition may be performed on the $\Delta \phi$ spectrum.
- Ridge-yield analyses can test models that predict the "ridge" feature.
- CLAS12 is well suited for such analyses due to its large acceptance and high luminosity.
- We can use this *ep* scattering data from RGA as a reference for nuclear-target measurements.
- Plan forward:
 - Include outbending data (in addition to inbending)
 - Loosen p_t (and possibly other) cuts to further increase statistics in ridge yield analysis
 - Determine systematic errors.

Backup Slides

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ Ξ ♪ ♡へで 22/25

correlations in H1@HERA

No near-side long-range ridge with H1 DIS data Extract ridge vield limits through ZYAM and booststrap procedure Ridge at CMS

Collectivity as a probe of parton correlation:

Lots of evidence of collectivity in high multiplicity pp and pPb collisions, similar to heavy-ion collisions attributed to the perfect liquid nature of QGP What about even smaller system?

< □ > < @ > < E > < E > E の < ○ 24/25

Ridge yield at CLAS-12 vs ntracks (mc=pink)

