Computing Update

N. Baltzell - CLAS Collaboration Meeting - March 2, 2021

CLAS12 Chef Documentation

Weekly meetings with run group chefs
and software/computing coordinators

Documentation cleaned up, expanded,
more guidelines and examples, FAQs,
common issues and concerns

Linked from the reconstruction tab of
the software wiki

Useful for new chefs and future run
groups coming online in the
collaboration, soliciting feedback on
what’s missing

Introduction Ge

Common Mi:

YAML

Currently the most ¢
incorrect CCDB timg¢
required parameters

While there are autc
characters, present
sections, YAML files

Other

The other main oppi
in the future.

YAML Tricks

Global Section

[edit]

Introduction Generation Monitoring Tips Examples People

This page documents standard tools for all CLAS12 chefs for data processing, including decoding, reconstruction, and trains.
These tools leverage supported JLab Scicomp utilities, such as SWIF workflows and the SWIF and SLURM databases, for
controlling and monitoring large groups of jobs.

The goal is standardzing and optimizing the way run group chefs deal with their jobs on the JLab batch. This includes avoiding the
need for writing any specialized scripts, e.g. generating file lists or submission files, job bookkeeping or monitoring and cleanup
tools, as well as minimizing room for human error and creating a consistent naming scheme for file and sub-directory structures.

This system also includes rigorous error checking and corresponding exit code reporting within the jobs. Integrity checks are
performed on every output file before releasing it for staging to its final destination. The result is that if these tools report "success",
it can be trusted that the outputs are good. In additional, the occaisonal failed jobs can be automatically retried with SWIF and
recovered (unless there are critical data/software integrity issues).

Environment Setup

To get access to these tools, use the usual environment modules for CLAS12 software, and then load the workf1ow module, e.g.:

source /group/clasl2/packages/setup.(c)sh

module load workflow

That will put a small set of frontend python scripts, discussed on the other tabs on this wiki page, into your spaTu for easy access.
Note, all scripts have the -h option to provide full usage information and also give feedback on improper usage whenever possible.

For settings common to all services, e.g. CCDB variation and timestamp, a global section in the severices section is honored

(and overriden by service-specific ones of the same name. For example:

configuration:

adalnhal -

Batch Farm - Memory Requests

* Over the past year, we’'ve gotten much better regarding CLAS/CLAS12 user jobs, but still occasionally some outliers.

* The plot below was yesterday and abnormal. It shows a 50% idle farm, even though plenty of jobs in the queue,
purely due to unnecessarily-bloated memory requests!

e Before running many jobs on the batch farm, make sure your requests are appropriate for the jobs in question. Run
some test jobs, check memory usage at scicomp.jlab.org, and set requests accordingly.

128

0

e 96
g
o) =y EEE. “EEEEE - -- | I T H | L
T il gl e T TR
il Tt e OO ket b i
Total Slots @ Memory Used @ Memory Requested @ CPU Used Reserved @ Offline @ Down
128
"6 96
P 64 I |l|“" I f
o I Iy |
o ot | il
I T H- || || ||
Uu

Reserved @ Offline

CP Dow

Total Slots @ Memory Used @ Memory Requested

3

Future COATJAVA Releases - Java 11

* 10-20% reconstruction speedup by compiling
and running in Java 11

8

== N
= N

11+opts

e wasn’t effective in multi-threaded jobs until

CLARA also compiled in 11, recently S 9.04 : | . %W - BAND: 0.02 ms 0.
CND: 0.39 \ | CND: 0.44 ; CND: .46 ms 0.
. . . CTOF: 1.39 : CTOF: 1.64 : CTOF: 1.46 0.
 Dependencies also starting to get benefits from CVT: 128.31 ms 13. : CVT: 99.85 i CVT: 95.05 :: 13.
going to 11 DCHB: 397.09 ms 42. | DCHB: 371.79 : DCHB: 295.51 ms 41.
DCTB: 391.92 ms 42. | DCTB: 344.07 . DCTB: 314.37 ms 44.
: EBHB: 0.57 ms 0. I EBHB: 0.55 ms 0. EBHB: 0.58 ms 0.
o
e.g. recent GROOT improvements EBTB: 0.91 ms . | EBTB: 0.87 ms 0. EBTB: 0.94 ms 0.
_ EC: 0.66 ms 0. I EC: 0.67 ms 0. EC: 0.74 ms 0.
* |n order to accommodate that, production FTCAL: 0.09 ms 0. | FTCAL: 0.09 ms O. FTCAL: 0.09 ms 0.
code will not be compilable in 8 anymore e :gi — : : FTEB: 0.04 ms O. LED1 0.00. W A
- : THODO: .11 ms 0. FTHODO: 0.11 ms 0. FTHODO: 0.12 ms 0.
(without manually reverting to older FTOFHB: 1.23 ms 0. | FTOFHB: 1.30 ms 0. FTOFHB: 1.40 ms 0.
dependency versions, but we can keep a FTOFTB: 1.21 ms 0. | FTOFTB: 1.27 ms 0. FTOFTB: 1.37 ms 0.
branch available for that if necessary) HTCC: 0.03 ms 0. I HTCC: .03 ms O. HTCC: .03 ms 0.
LTCC: 0.02 ms 0. | LTCC: 0.02 ms 0. LTCC: 0.02 ms 0.
: MAGFIELDS: 0.01 ms 0. : : " .
« Java 11 is standard on all/most modern AmADSR o7 le : MG:&;IEJ:: 3.3 :: :. mc;g;g:: ::; :: :.
operating systems and is the current LTS release RICH: 0.68 ms 0. | RICH: 0.61 ms 0. RICH: 0.60 ms 0.
RTPC: 0.01 ms 0. | RTPC: 0.01 ms 0. RTPC: 0.01 ms 0.
e and available in our CUE environment SUAERL. 9a4f Be | WRITER: ~ 0.23 ms O. et bl
modules TOTAL: 925.02 ms | TOTAL: 823.72 ms TOTAL: 713.13 ms
J : ' .
* It’s (past) time to make the switch; expect There’s also potential speedup from 14 in garbage collection, which we have a lot of, and we may test
future releases to not support Java 8 at and run production chef jobs in that soon. But since 14’s not a LTS, and less easily available in many
compile nor runtime ... distributions, standard releases will not be migrated yet.

Scicomp (1)

Scicomp Farm Cluster Utilization

Farm Utilization Farm Usage Slurm Monthly Report Summary Report Fairshare

* New, more |/O-performant /work
fileserver in procurement stages

One month Hourly Summary

30k

 should be available later this year 2 20k
. . . § 10k
* New scicomp-2020.jlab.org website =
Do o ™ %
o Y v, = 5 > S > & 9 % 25 5 ly p s Y lo 0 % % % S
* Much faster load times, more user- Date
fr|end|y, more batCh farm — Capacity @ Allocated @ Used @ Down @ PlanDown

bookkeeping, e.g. quarterly, yearly
* Does not provide support for Auger jobs, and Auger will eventually be removed and replaced by SWIF

® [f you’re still submitting jobs with Auger, you should consider updating to SLURM, or SWIF if you need file staging
e swif2 is available for testing
» see /site/bin/swif*, overhauled for offsite and grid jobs
e user interface is very similar to the original swif (now called swif1)

e see scicomp’s website for documentation

http://scicomp-2020.jlab.org

Scicomp (2)

: Ju pyter Home Token baltzell = @ Logout

* New jupyterhub.jlab.org notebooks requested by .
CLAS collaboration members and in development Spawner Options

Select a notebook image

e one with python kernel and pyROOT v

e another with C++/RO0OT kernel, and Specify runtime (HH:MM:SS format, Max: 24hr)

clas12root support coming soon 1:00:00
Specify CPUs per task (Max: 16)

* Full access to JLab filesystems 1

' i S M PU (Max: 4000 MB
 Must be in a SLURM account for access, which is pecify Memory per CPU (Max: 4000 MB)

already true if you’ve run a batch job before 1000
Select GPU type - BETA - Limited Availability
* otherwise we submit a request at cc.jlab.org A ——— .

Specify GPUs per task (Max: 4) - BETA - Limited Availability

0

http://jupyterhub.jlab.org
http://cc.jlab.org

Summary

» CLAS12 chef documentation improved and expanded, soliciting feedback from chefs
 Batch farm job memory requests still important (and not always good, sometimes severely!)
 Moving COATJAVA and some dependencies (at least GROOT) to Java 11 for future releases
e with a major version bump
e Scicomp
 New and improved scicomp website

 Doesn’t support Auger, which will be getting phased out eventually, move your job
submissions to SLURM/SWIF

 New notebooks at jupyterhub.jlab.org for CLAS in progress

 New /work fileserver in procurement, anticipated ready for use this year

http://jupyterhub.jlab.org

