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Experiment Overview

€ Pround — (e')e+e_p

» The electron beam produced by CEBAF
scatters with a deuterium target
through the exchange of a quasi-real
photon Q?~0.

» In the et e™ p channel the electron
beam interacts with the proton inside
the deuteron.

» The proton and e™e™ pair produced in Feynmann diagram of P
J/w decay are detected in the FD. pentaquark photoproduction.
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Goals

» Verify the LHCb results and look for
isospin partners of the P+
Pentaquarks.

» Study the production mechanism of
J/Y near threshold by measuring the
total cross section as a function of
beam energy.

» Study the distribution of color
charge in the nucleon by
measuring the t-dependency of the
differential cross section of J/y
photoproduction.
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Initial Event Selection ks

10000

» We start with the Event Builder (EB) PID for 9000
our final state particles: 8000

» For e+/e-, the EB requires 2 photoelectrons 7000
produced in the HTCC, 60 MeV energy 6000
deposition in PCAL and 50 cut on the 5000

sampling fraction parametrization .

» For protons, the EB cuts on the expected 0

time of flight.

Missing Mass Squared

24000

» Aswe're interested in the quasi-real 22000
photoproduction regime we want Q? close [RESE
to 0. 18000

16000

14000

» Similarly, we want the missing mass close 10 [
the mass of the scattered electron (which 10000
is effectively 0). 8000

6000
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Yield
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Radiative Corrections

» Radiated photons in ECAL are identified by
looking at the difference in theta for the
electrons and photons. Here we cut on
| dTheta | <0.7 degrees.

» The electron momentum is recovered by
adding the momentum of the radiated
photon.

» Some photons are mis-IDed as neutrons by
the event builder. Their momentum is
recalculated from the photon sampling
fraction parametrization then added o the
electron momentum.




Radiative corrections
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Require [MM?| < 0.2 GeV, 0% < 0.2 GeV, and some additional PID (cf next few

slides).



P

D Refinement

» The RG-A Analysis Note defined a list of
cuts to improve electron, positfron and
hadron identification:

>

>

Triangular cut on individual calorimeters
sampling fraction (as shown).

3.50 cut on the sampling fraction
parametrization.

0.07 GeV minimum energy deposition in
the PCAL cut.

L-Vertex position cut.
3.50 chi2PID cut for the proton.

e-E

/P vs EECin/P

0.16




PCAL Fiducial Cuts

If the electron hits close to the edges of
the PCAL, the shower may not be fully
contained within the calorimeter volume.

This can lead to a wrong sampling
fraction and reduced identification
power for electrons and positrons.

A proper cluster formation requires aft
least 1 bar (4.5 cm) distance to the edge
so we place our cut at 2 bars (2.0 cm).

Additional work is being done on electron
PID and fiducial cuts for RG-B by Dien
Nguyen and Andrew Denniston

Sampling Fraction

e- Sampling Fraction vs LV




Effect of PID and Fiducial Cufts
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Positron ID Refinement

» From MC we see pions being miss-IDed as Miss-1Ded pi+ Momentum
positrons above 4.5 GeV, due to the HTCC
firing for high momentum pions.

» Train a multivariate classifier on MC daita.
The training is done with the ROOT TMVA
software package.

» Our positive and negative training samples
are then:

» MC positron as signal training sample.

» MC pion IDed as positron as background

training sample. 8 9 10
Momentum [GeV]




.
Variables used for Al

0.18 BN Positive Sample
0.16 [—Z] Negative Sample

014

(1/N)dN/0.974

» High momentum pions are mis-identified as positrons
as they produce photoelectrons in the HTCC.

UIO-flow (S,B): (0.0, 0.0)% / (0.0, 0.0)%

» However, the distributions in, for example, the
number of photoelectrons in the HTCC, or the PCAL
sampling fraction, show notable differences.

10 15 20 25 30 35 40
poMNphe

Input variable: poPCalSF

» Our classifier will learn to recognise the distributions
characteristic of pions and positrons in each of the
following:

» PCALLU/LV/LW and M2U/M2V/M2W.

» PCAL/ECIN/ECOUT energy depositions and individual
calorimeter sampling fractions.

UIO-flow (5,B): (0.0, 0.0)% /{0.0, 0.0)%

» HTCC photoelectrons.
24

poPCalSF




Response

TMVA overtraining check for classifier: BDT

» The classifier output is given as a _ * Signal (training sample)
probability of being a signal event. We - Background (training sample)
CCI” ThIS prObOb”lTy The response. olmogorov-Smirnov test: signal (background) probability = 0.749 ( 0.16

1

» A perfect classifier would assign @
response of 1 to all signal events and a
response of O to all background events.

» The classifier effectively reduces the PID
process down 1o a cut on the response.
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Cutting on the Response

» As we vary the cut on the
response, we start to reject signal
and background events.

» We can use this to evaluate the
systematic error infroduced by
our cut.

» Here we chose to place this cut
ATOEEN
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e+ e- Invariant Mass

e+ e- [nvariant Mass

» |[MM?| < 0.2 GeV 2 o
Preliminary

> 0% < 0.2GeV ?
» e+ PID response>0.3
» et+/e- PCAL Fiducial Cuts

» Proton and electron EB
PID only
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e+ e- Invariant Mass

e+ e- [nvariant Mass

» RG-A has J/ ¢ yields: Entries 4205
A x? / ndf 7.715/13

» 200 £ 21 in the fall2018 oo 0.8617
dataset for an accumulated Jiyp Yield 198 £ 21.3
charge of 60 mC at 10.6 GeV. Mean 5,068 = 0.005

) 0.04379 + 0.00455

» 58 + 9 Ta the Spl’lngQO] 9 for - fo 1st order coef 134.7 £ 10.3

R 2nd order coef -125+ 16.5

On OccumUk]Ted ChQrge Of ' 3rd order coef -110.4 + 58.8

54 mC at 10.2 GeV. i L4 offset 28.16 £ 2.44

» The total accumulated
charge of the spring2019 RG-B
runs was 80 mC at 10.6 and
10.2 GeV. T T TR 152 s et s

Invariant Mass [GeV]




Conclusion and Next Steps

» The analysis for J/y photoproduction in the ete™p final state with RG-B
data is well advanced. Calculating the total and differential cross
sections will provide a healthy cross check to RG-A measurements.

» This analysis needs to be repeated for the e nyyung — (€)eT e n channel.
The main complications will be due to neutron efficiency and
reconstruction.
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All training Variables |
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All training Variables |

Input variable: poEPCal
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Input variable: poEECin
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