RG-B: J/W in e+ e- p channel **RICHARD TYSON**

University of Glasgow

Experiment Overview

 $e p_{bound} \rightarrow (e')e^+e^-p$

- The electron beam produced by CEBAF scatters with a deuterium target through the exchange of a quasi-real photon $Q^2 \sim 0$.
- In the e⁺ e⁻ p channel the electron beam interacts with the proton inside the deuteron.

The proton and e^+e^- pair produced in J/ ψ decay are detected in the FD.

J/ψ quasi-real photoproduction

Feynmann diagram of P_C^+ pentaquark photoproduction.

P_C^+ resonances at the LHCb (2019)

The e⁺e⁻n final state further offers the possibility of looking for the isospin partners of the P_c⁺ Pentaquarks.

The J/ ψ p invariant mass distribution [1].

Goals

- Verify the LHCb results and look for isospin partners of the P_c^+ Pentaquarks.
- Study the production mechanism of J/ψ near threshold by measuring the total cross section as a function of beam energy.
- Study the distribution of color charge in the nucleon by measuring the t-dependency of the differential cross section of J/ψ photoproduction.

The J/ ψ total cross section as a function of beam energy, scaled to GlueX data [2].

Initial Event Selection

We start with the Event Builder (EB) PID for our final state particles:

- For e+/e-, the EB requires 2 photoelectrons produced in the HTCC, 60 MeV energy deposition in PCAL and 5σ cut on the sampling fraction parametrization
- For protons, the EB cuts on the expected time of flight.
- As we're interested in the quasi-real photoproduction regime we want Q^2 close to 0.
- Similarly, we want the missing mass close to the mass of the scattered electron (which is effectively 0).

$|MM^2|$ and Q^2 Cuts

 J/ψ and Background Yields vs MM^2/Q^2 Cut Width

Radiative Corrections

- Radiated photons in ECAL are identified by looking at the difference in theta for the electrons and photons. Here we cut on |dTheta|<0.7 degrees.</p>
- The electron momentum is recovered by adding the momentum of the radiated photon.
- Some photons are mis-IDed as neutrons by the event builder. Their momentum is recalculated from the photon sampling fraction parametrization then added to the electron momentum.

Radiative corrections

e+ e- Invariant Mass e+ e- Invariant Mass χ^2 / ndf 16.81 / 13 χ^2 / ndf 5.832 / 13 160_F 0.2082 0.9521 Prob Prob 160 Without With J/Psi Yield 124 ± 18.6 193.2 ± 25.3 J/Psi Yield 140 3.066 ± 0.005 3.063 ± 0.006 Mean Mean 140 0.04017 ± 0.00707 Sigma 0.04344 ± 0.00574 Sigma 120 131.5 ± 9.8 1st order coef 166.8 ± 11.8 1st order coef 120 -169.2 ± 16.7 2nd order coef 2nd order coef -171.1 ± 19.4 100 3rd order coef -43.57 ± 58.48 3rd order coef -82.47 ± 67.72 100 35.38 ± 2.84 24.15 ± 2.25 offset offset 80 80 60 60 40 40 20 20 2.5 2.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 2.6 2.7 2.8 2.9 3 3.1 3.2 3.3 3.4 3.5 Invariant Mass [GeV] Invariant Mass [GeV]

Require $|MM^2| < 0.2$ GeV, $Q^2 < 0.2$ GeV, and some additional PID (cf next few slides).

PID Refinement

- The RG-A Analysis Note defined a list of cuts to improve electron, positron and hadron identification:
 - Triangular cut on individual calorimeters sampling fraction (as shown).
 - 3.5σ cut on the sampling fraction parametrization.
 - 0.07 GeV minimum energy deposition in the PCAL cut.
 - Z-Vertex position cut.
 - > 3.5σ chi2PID cut for the proton.

PCAL Fiducial Cuts

- If the electron hits close to the edges of the PCAL, the shower may not be fully contained within the calorimeter volume.
- This can lead to a wrong sampling fraction and reduced identification power for electrons and positrons.
- A proper cluster formation requires at least 1 bar (4.5 cm) distance to the edge so we place our cut at 2 bars (9.0 cm).
- Additional work is being done on electron
 PID and fiducial cuts for RG-B by Dien
 Nguyen and Andrew Denniston

e- Sampling Fraction vs LV

Effect of PID and Fiducial Cuts

e+ e- Invariant Mass

J/ψ and Background Yields vs Cut Number

Positron ID Refinement

- From MC we see pions being miss-IDed as positrons above 4.5 GeV, due to the HTCC firing for high momentum pions.
- Train a multivariate classifier on MC data. The training is done with the ROOT TMVA software package.
- Our positive and negative training samples are then:
 - MC positron as signal training sample.
 - MC pion IDed as positron as background training sample.

Variables used for Al

High momentum pions are mis-identified as positrons as they produce photoelectrons in the HTCC.

- However, the distributions in, for example, the number of photoelectrons in the HTCC, or the PCAL sampling fraction, show notable differences.
- Our classifier will learn to recognise the distributions characteristic of pions and positrons in each of the following:
 - PCAL LU/LV/LW and M2U/M2V/M2W.
 - PCAL/ECIN/ECOUT energy depositions and individual calorimeter sampling fractions.
 - ▶ HTCC photoelectrons.

Response

- The classifier output is given as a probability of being a signal event. We call this probability the response.
- A perfect classifier would assign a response of 1 to all signal events and a response of 0 to all background events.
- The classifier effectively reduces the PID process down to a cut on the response.

TMVA overtraining check for classifier: BDT

Cutting on the Response

- As we vary the cut on the response, we start to reject signal and background events.
- We can use this to evaluate the systematic error introduced by our cut.

Here we chose to place this cut at 0.3. J/ ψ and Background Yields vs Response Cut Value

e+ e- Invariant Mass

 $|MM^2| < 0.2 \text{ GeV}^2$

▶ Q² < 0.2GeV ²

e+ PID response>0.3

e+/e- PCAL Fiducial Cuts

Proton and electron EB PID only

e+ e- Invariant Mass

RG-A has J/ ψ yields:

- 200 ± 21 in the fall2018 dataset for an accumulated charge of 60 mC at 10.6 GeV.
- 58 ± 9 in the spring2019 for an accumulated charge of 54 mC at 10.2 GeV.
- The total accumulated charge of the spring2019 RG-B runs was 80 mC at 10.6 and 10.2 GeV.

Conclusion and Next Steps

The analysis for J/ψ photoproduction in the e^+e^-p final state with RG-B data is well advanced. Calculating the total and differential cross sections will provide a healthy cross check to RG-A measurements.

▶ This analysis needs to be repeated for the $e n_{bound} \rightarrow (e')e^+e^-n$ channel. The main complications will be due to neutron efficiency and reconstruction.

[1] R. Aaij et al. (LHCb Collaboration), Observation of a narrow pentaquark state, $P_c(4312)^+$, and of two-peak structure of the $P_c(4450)^+$, *Phys. Rev. Lett.* **122** 22 (2019).

[2] A. Ali et al (GlueX Collaboration), First measurement of near-threshold J/ψ exclusive photoproduction off the proton, *Phys. Rev. Lett.* **123** 072001 (2019).

Backup Slides

All training Variables I

All training Variables II

