

#### Calibration Status of BONuS12 Experiment Towards Pass1 Review

M. Hattawy

(On Behalf of CLAS Collaboration)

CLAS Collaboration Meeting, March 4<sup>th</sup>, 2021

<u>رن</u> ODU

#### **BONuS12 Physics Motivations**



# **BONuS12** Experimental Setup

$$e^{-} D \rightarrow e p \gamma (n)$$

#### 10.4 GeV

#### - CLAS12 Forward Detector:

- $\rightarrow$  Superconducting Torus magnet.
- $\rightarrow$  6 independent sectors:
  - $\rightarrow$  HTCC: identifying e<sup>-</sup> (p < 5.0 GeV/c).
  - $\rightarrow$  3 regions of DCs: tracking charged particles.
  - $\rightarrow$  (LTCC and RICH):  $\pi^{-}$  identification (p >3.0 GeV/c).
  - $\rightarrow$  FTOF Counters: identifying hadrons.
  - $\rightarrow$  PCAL and EC: detecting  $\gamma$ , e<sup>-</sup> and n [5°,40°].

#### - Central Detector:

- **Target:** D<sub>2</sub> gas @ 7.5 atm, 293 K
- BONuS12 RTPC: Detects low energy spectator protons.
- Solenoid: Shields the detectors from Møller electrons.
  Enables tracking in the RTPC.
- CTOF, CND, and FMT



<u>رن</u> ODU

#### **RG-F Data Summary**



| Beam Energy | Target | Spring 2020                                                                            | Summer 2020 |
|-------------|--------|----------------------------------------------------------------------------------------|-------------|
|             | H2     | 81M                                                                                    | 185M        |
|             | D2     | 37M                                                                                    | 45M         |
| 1 Pass Data | 4He    | 19M                                                                                    | 44M         |
|             | Empty  | 1M                                                                                     | 22M         |
|             | Total  | 138M                                                                                   | 296M        |
|             | H2     | 151M                                                                                   | 266M        |
|             | D2     | Spring 2020<br>81M<br>37M<br>19M<br>1M<br>138M<br>151M<br>2275M<br>77M<br>21M<br>2524M | 2355M       |
| 5 Pass Data | 4He    | 77M                                                                                    | 51M         |
|             | Empty  | 21M                                                                                    | 45M         |
|             | Total  | 2524M                                                                                  | 2717M       |

<u>رن</u> ODU

# **BONuS12 RTPC**

#### - Design:

- ◆ 100% azimuthal coverage.
- ◆ 400 mm long , 160 mm Ø.
- 60 mm diameter target with 50  $\mu$ m Kapton wall.
- 30 mm radius of cathode foil (4  $\mu$ m thick).
- 40 mm drift region with total drift voltage of 4.3 kV.  $|\vec{B}| = 3.7-4 T$
- ◆ 3 GEMs layers, gain of 100/layer
- ♦ 17280 readout elements (2.7 mm x 3.9 mm).



#### - Work principle:

<u>(</u>)

**ODU** 

Charged particle ionizes the gas atoms

- → Under EM field, released electrons follow their drift paths at a certain drift speed
  - $\rightarrow$  Amplifications via the 3 GEM layers

 $\rightarrow$  Readout board  $\rightarrow$  MVT FEU electronics  $\rightarrow$  Signal height vs. Time bin

#### - Offline reconstruction:

Signal height 
$$\frac{\text{Pads' gains } (G_i)}{\checkmark} \checkmark \left\langle \frac{dE}{dX} \right\rangle = \frac{\sum_{i} \frac{ADC_i}{G_i}}{vtl}$$

Time and Pad location  $\rightarrow$  3D reconstruction of track  $\rightarrow$  vector p/q, vz, vertex time

PID

## Preliminary Analysis – 1 Pass Data



心 ODU

 $\mathbf{e}_{tot}/\mathbf{p}$ 

# BONuS12 Timelines - Summer2020 (1/2)



In progress: Regions have been defined, and a new calibration iteration will adapt for the variation in the observed timing quantities.

# BONuS12 Timelines - Summer2020 (2/2)



Ongoing: Two regions have been defined. Will adjust two Gain setting for the summer.

**(()**)

**ODU** 

#### **RF Calibration - Summer2020**

#### Raffaella & Jose



## **Beam Offset Corrections - Summer2020**



## **FToF Calibration - Summer2020**



### **DC Calibration – Summer 2020**



(Ú)

**ODU** 

#### **EC Calibration – Summer 2020**

C. Smith

» All Sectors except S4 show ~ 2% drift in the Sampling Fraction over the whole Summer run.
» S4 shows stronger shifts due to gain instability, fixed by compensating for the SF shifts.
» Other sectors are very close to each other with slight shifts in SF.



## **LTCC Calibration - Summer2020**

» S3 shows lower nphe for e- during the outbending 2 GeV runs, but calib-wise everything seems stable.
 » Slight performance shift between the two sectors, but very stable during the production (10.4 GeV) data.



sec3 sec5

(Ú)

**ODU** 

# **Ongoing HTCC** Calibration - Summer2020

» Basically no big shifts, but there is a window for improvments.» 9 Periods have been defined.

» Ongoing calibration that will be finalized by March 10<sup>th</sup>.

ients.

Average HTCC Number of Photoelectrons per sector



 $\equiv$ 

N. Markov

# **Ongoing RICH** Calibration - Summer2020

» Typical mean < 60 ps and Typical sigma <460 ps</li>» Pending for the expert to select calibration runs!

(Ú)

**ODU** 



16

M. Mirazita

# FMT Alignment - Summer2020

#### Raffaella & Burno

Alignment was performed by minimizing residuals between a DC track and a matching FMT cluster. Results are available in the CCDB under /geometry/fmt/alignment.

To validate results, changes have been applied to FVT reconstruction. Among these:

- We implemented the alignment shifts to FMT constants, coordinate transformations, and the DC trajectory surfaces.

- The swimming method SwimToBoundaryPlane had an error when checking the vertex and was fixed.

- Many more minor changes were done (and more are still in progress) to apply the shifts correctly and to improve FVT reconstruction in general.

With the changes applied we see more tracks obtained after alignment, but no major vertex resolution improvement has been seen so far.

For future work, we're looking into more issues in reconstruction and we're planning to perform FMT alignment without working from DC tracks.



## Conclusions

& RG-F has received 87% of the Approved PAC days. Total of 5.68B triggers (83% on D<sub>2</sub> target)

- $\rightarrow$  Spring run (Feb 11<sup>th</sup> March 24<sup>th</sup>, 2020) ~ (RTPC1 + RTPC3) 47% of the collected data.
- $\rightarrow$  Summer run (Aug 1<sup>st</sup> Sep 21<sup>st</sup>, 2020) ~ (RTPC3) 53% of the collected data.

The Summer run calibration is at an advanced stage:
 RF, Beam Offsets, FToF, DC, and LTCC calibration are DONE.
 HTCC and RICH calibrations are Ongoing.
 RTPC: Ongoing & already in an advanced stage.
 FMT, CToF, and CND: will need well calibrated FD and RTPC (after pass1).

 $\rightarrow$  Pass1 review is expected by end of March.

♦ The Spring run: RF, Beam Offsets, FToF are DONE. Pass0v4 is in the process to clear if we need additional FToF calibration.

## **Backup Slides!**

### Preliminary Analysis – 5 Pass Data



## **RG-F Future Work & Manpower**

| Work Item                                                                                                                       | Volunteer               | Volunteer                | Volunteer                      |
|---------------------------------------------------------------------------------------------------------------------------------|-------------------------|--------------------------|--------------------------------|
| 1. Garfield++ studies                                                                                                           | Yu-Chun Hung            | Aruni Nadeeshani         |                                |
| 2. Maintaining and updating BONuS12 GEMC simulation                                                                             | Yu-Chun Hung            | Krishna Adhikari         |                                |
| 3. Radiative losses from simulation for different final state particles                                                         | Madhusudhan Pokhrel     | Krishna Adhikari         | Eric Christy (inclusive)       |
| 4. Analysis of simulated data, i.e., elastic and other channels (n-DIS, n-DVCS, n-DVMP,)                                        | Madhusudhan Pokhrel     | Mohammad Hattawy         |                                |
|                                                                                                                                 |                         |                          |                                |
| 5. Implementing Kalman filter for BONuS12                                                                                       | Mathieu Ouillon         | Sebastian Kuhn           |                                |
| 6. Improving BONuS12 code for track finding, merging, and disentangling                                                         | Mathieu Ouillon         | Sebastian Kuhn           |                                |
| 7. Extracting resolutions and corrections in vertex, momentum, theta, phi; effiency using the elastic data                      | Madhusudhan pokhrel     | Mohammad Hattawy         |                                |
| 8. Improving the gain calibration and the calculated dEdx                                                                       | Madhusudhan pokhrel     | Sebastian Kuhn           | Mohammad Hattawy               |
|                                                                                                                                 |                         |                          |                                |
| 9. Checking the CLAS12 alignment using the zero-field run, then re-do DC calibration if needed (DC expert)                      | Mohammad Hattawy        |                          |                                |
| 10. Checking the energy calibration of PCAL+ECAL for e- and extracting corrections (through etot/p vs. time)                    | Jiwan Poudel            | Mohammad Hattawy         |                                |
| 11. Checking the energy calibration for final photons through pi0 final state particles and extract corrections                 | Jiwan Poudel            | Mohammad Hattawy         |                                |
| 12. Extract acceptance ratios and detection effiency from simulation for different final state particles (e-, p, n, photon, D2) | Mohammad Hattawy        |                          |                                |
| 13. Checking the calibration of the neutron detection in the central CND and CToF from experimental data                        | Mohammad Hattawy        | Daniel Carman            | Silvia Niccolai                |
| 14. Contributing in the FMT reconstruction implementation                                                                       | Bruno Benkel (software) | Jorge Lopez (validation) | Raffaella De Vita (supervisor) |
|                                                                                                                                 |                         |                          |                                |
| 15. Continue supporting cooking the BONuS12 data                                                                                | Bradley Yale            | Mohammad Hattawy         |                                |
| 16. Analyzing the elastic data on the four different targets (H2, D2, 4He, empty)                                               | Sebastian Kuhn          | Krishna Adhikari         | Eric Christy                   |
| 17. DIS analysis on D2 using the 10GeV data                                                                                     | Sebastian Kuhn          | Krishna Adhikari         | Eric Christy                   |
| 18. n-DVCS analysis on D2 using the 10 GeV data                                                                                 | Mathieu Ouillon         | Mohammad Hattawy         |                                |
|                                                                                                                                 |                         |                          |                                |
| 19. Maintaining the database                                                                                                    | Aruni Nadeeshani        | Mohammad Hattawy         |                                |
| 20. Target Purity studies                                                                                                       | Narbe Kalantarians      |                          |                                |
|                                                                                                                                 |                         |                          |                                |

<u>\@</u> ODU

# A Short History of RG-F

- 2/10-12: RTPC1/FMT installed in Hall, Cosmic Runs.
- 2/12-14: Accelerator startup and beam tuning
- 2/14-15: 2.1 GeV outbending run on all the target types (H<sub>2</sub>, empty, D<sub>2</sub> and <sup>4</sup>He) (calibration).
- 2/16-3/9: 10.4 GeV inbending production running on all the targets
- 3/9-14: 10.4 GeV outbending production running on all thetargets
- 3/14-16: Brief return to 10.4 GeV inbending production running on  $D_2$
- 3/16-20: Swap RTPC1 against RTPC3
- 3/20-24: 10.4 GeV inbending production running on all the targets.
- 3/24-06/08: Run halted (MEDCON-6).

**(()**)

**ODU** 

- 06/08-07/17: Sealing RTPC3 (along the seam, first using Silicon on SL1, then DP-190 on SL0) and changing the target straw (15um → 30 um target windows).
- 07/17-07/31: Cosmic data (maps in B field and HV).
- 08/02-08/06: 2.2 GeV outbending and inbending (half torus field) run on all the target types (calibration)
- 08/08-09/08: 10.4 GeV inbending (full torus field) run on all the target types.
- 09/08 09/10: Changed the beamline exit window (38 hours started on 09/08 @ 11:30 AM)
- 09/10-09/21: Back to 10.4 GeV inbending (full torus field) run on all the target types.
- 09/21 @ 7:00: Run is completed. We took another 4 hours of cosmic data.

22