

# Feasibility Study of Ad Elastic Scattering in Data From Photoproduction Off Deuteron

Brandon Tumeo University of South Carolina

CLAS Collaboration Meeting March 2021

## Introduction

• **Goal**: investigate feasibility of extracting Ad elastic signal from photoproduction off deuteron (g13a data)

- **Motivation**: provide novel hyperon-nucleon-nucleon (YNN) scattering data for the study of YN interaction
- Hyperon Puzzle: "... the difficulty to reconcile the measured masses of neutron stars (NSs) with the presence of hyperons in their interiors ..." (Bombaci, 2016)

## Introduction

- NS equations of state not consistent with NS mass measurements of  ${\sim}2M_{\text{sun}}$ 
  - NN, NNN, YN forces included
  - YNN 3-body contribution needs improvement
  - Need more YN interaction constraints to improve YNN 3-body contribution
- Hypernuclear spectroscopy provides YN interaction constraints
  - Nuclear medium effects limit constraint determinations
- YN scattering is cleanest method to constrain constants in potentials
  - No nuclear medium effects → bare YN interaction
  - Existing YN scattering data limited due to short hyperon lifetimes





## Introduction

- Want to investigate feasibility of analyzing Ad elastic scattering to supply YNN scattering data
- How do we look for Ad elastic scattering?
  - Produce hyperons (Λ) off target (deuteron), which scatter off other target (deuteron) in same target cell
  - Done in:
    - Ap elastic scattering at JLab (CLAS g11) [Price, 2019 and Rowley, Ongoing PhD]
    - $\Sigma^{\pm}$ p elastic scattering at J-PARC [Yoshiyuki Nakada et al., 2019]
- Method requires two sequential nuclear reactions
  - Need very high luminosity experiment g13 had very high statistics (50 bn triggers)
  - Need detector with large acceptance CLAS has large acceptance for charged particles (~2.8π solid angle coverage)
  - Reaction process:  $\gamma d \rightarrow X\Lambda$ ,  $\Lambda d' \rightarrow \Lambda d'$ ,  $\Lambda \rightarrow p\pi^{-1}$

## Analysis: Concept

- Interested in Ad <u>elastic</u> scattering:
  - $\quad \gamma \; d {\rightarrow} X \; \Lambda$
  - $\quad \wedge d' \rightarrow \wedge d'$
  - $\Lambda$  decays into p  $\pi$ -
- Final particles detected:
  - d', p, π<sup>-</sup>
  - possibly others (due to X)
- Reconstruct scattered  $\Lambda$  and beam  $\Lambda$





#### Analysis: Overview

- Particle Identification (PID, based on time-of-flight technique)
  - Initial PID  $\rightarrow$  reconstructed mass (skimming)
    - Require <u>at least</u> one d,p, $\pi$ ; no constraint on other charged/neutral particles
  - − Refined PID  $\rightarrow$  particle speed
    - Require exactly one d,p, $\pi$ ; no constraint on other charged/neutral particles
- PID Verification (dE technique)
  - Noisy TOF paddles
  - Accidental Background Reduction:  $\gamma d \rightarrow pp\pi^{-1}$
- Reaction Selection:  $\Lambda d \rightarrow \Lambda d$ 
  - Scattered Λ reconstruction
  - "Beam" A reconstruction

#### **Initial Particle Identification**

•  $m_0^2 = p^2(1-\beta^2)/\beta^2$ ;  $\beta = Speed = L/c\Delta t$ ; p = momentum = qB/r



#### **Refined Particle Identification**

- $\beta_{\text{meas}} = L/c\Delta t$
- $\beta_{calc} = p/\sqrt{p^2 + m^2}$

- $\Delta\beta = \beta_{meas} \beta_{calc}$ 
  - m  $\rightarrow$  deuteron, proton, or pion mass

- m: mass hypothesis



#### **PID Verification**

- e-loss: charged-particle energy deposition in TOF scintillators
- Deuteron sample: unphysical signature → problems with deuteron e-loss determinations → noisy TOF paddles for deuteron tracks



Particle momentum vs. energy deposition

Event distribution of momentum vs. e-loss for (left) deuteron tracks, (middle) proton tracks, and (right) pion tracks.

#### Deuteron sector vs. paddle



Event distribution over TOF sector and paddle number of deuteron tracks.

#### **PID Verification**

• Veto of TOF paddle noise in deuteron tracks removes unphysical signature



### **PID Verification**

- What about the protons in the deuteron track?
  - Proton signature: accidental protons from  $\gamma d \rightarrow pp\pi^{-}$
- What about the pions in the deuteron track?
  - Not reduced in this study
  - Not dominant after Ad elastic scattering event selection

- $MM_{p\pi}^2 = [P_{\gamma} + (m_d, 0) P_p P_{\pi}]^2$ , using true proton track
- Veto events with  $MM_{p\pi}^2$  within  $m_p^2 \pm 0.15 \text{ GeV}^2/c^4$



- ~ 900,000 events removed
- Proton signature remains, but is not dominant after Ad elastic scattering event selection



#### **Reaction Selection**

• How do we know  $dp\pi^{-}$  measured final state came from  $\Lambda d$  elastic?

**Definitions:** 

- $P_{\Lambda-\text{scat}} = P_p + P_{\pi}$
- $P_{d'} = (m_d, 0) \rightarrow secondary deuteron$
- $P_{\text{beam}} + P_{\text{d'}} = P_{\Lambda\text{-scat}} + P_{\text{d-meas}} \rightarrow P_{\text{beam}} \text{ can be determined}$
- Knowing  $P_{\Lambda\text{-scat}}$  and  $P_{\text{beam}}$ , we determine  $\Lambda d$  elastic events:
  - m<sub>A</sub> = 1.1157 [GeV/c<sup>2</sup>]
  - Look for enhancement at  $M_{\text{beam}} = \sqrt{(P_{\text{beam}})^2} \approx m_{\Lambda}$
  - Look for enhancement at  $M_{\Lambda,scat} = \sqrt{(P_{\Lambda-scat})^2} \approx m_{\Lambda}$
  - If both true, we have Ad elastic event



#### Results

- Analysis performed on g13a subset of g13 data
  - ~ 2000 Λd elastic scattering events in g13a
  - ~ 4000 expected in all of g13
- Possible enhancement around  $\Sigma^{0}$  mass in  $M_{beam}$ 
  - m<sub>2</sub> = 1.1926 GeV/c<sup>2</sup>
  - May allow for  $\Sigma^0 d \rightarrow \Lambda d$  reaction measurements



#### Results

- Can expect cross-sections determined in the regions:
  - p<sub> $\wedge$ </sub> above 0.7 GeV/c
  - $\cos(\theta_{\Lambda}^{CM})$  between -0.6 and 0.9
  - $W_{dA}$  between 3 GeV<sup>2</sup> and 3.8 GeV<sup>2</sup>



- $W_{d\Lambda} = \sqrt{s_{d\Lambda}}$
- $s_{dA} = (P_d + P_A)^2 = m_d^2 + m_A^2 + 2(E_d E_A p_d \bullet p_A)$



### Summary and Outlook

- Goal: investigate feasibility of analyzing Ad elastic scattering from photoproduction off deuteron
- **Conclusion**: analyzing Ad elastic scattering from photoproduction off deuteron is feasible. Can expect approx. 4000 events in g13.
- Total and differential cross sections for  $\Lambda d$  elastic scattering can be determined:
  - For  $\Lambda$  beam momentum above 0.7 GeV/c
  - For  $W_{dA}$  between 3 GeV and 3.8 GeV
  - For  $\cos(\theta_{\Lambda}^{CM})$  between -0.6 and 0.9
- Determination of total cross section for  $\Lambda d \rightarrow \Sigma^0 d$  might be possible; expect limited statistics

- Reaction  $\gamma d \rightarrow pp\pi^{-}$  is very dominant  $\gamma d$  reaction
- Need photon beam information
- "Good" photons: photons in coincidence with fastest particle in event ( $\Delta t = t_{v,\gamma} t_{v,fast}$  within ±1 ns)
  - $t_{v,\gamma}$  = Photon vertex time =  $t_{center-of-CLAS}$  + (z + 20 cm)/c
    - $t_{center-of-CLAS}$  is time of photon at center of the CLAS
    - z is z-component of vertex position common to all tracks in event
  - $t_{v,fast}$  = Fastest-particle vertex time =  $t_{fast}$   $L_{fast}/c\beta_{fast}$ 
    - $t_{fast}$  is the time when that fastest particle reaches TOF detector
    - L<sub>fast</sub> is the associated path length of fastest particle from vertex to TOF detector
    - $\beta_{fast}$  is the speed of fastest particle

- "Good" photon event is event with  $|\Delta t| < 1$  ns
- Require 1 good photon per event



Distribution of photon coincidence times. Red lines depict the cuts defining "good" photons.

Number of good photons



Distribution of number of good photons per event.

## Extra Slides

- CLAS is optimized to detect multiplecharged-particle final states
- Large acceptance of  $\sim 2.8\pi$ 
  - Polar angle coverage between 8° and 140°
  - 360° azimuthal coverage, except in magnet coil shadow
- Photon tagger → photon beam; tags photons in beam
- Torus magnet → azimuthal magnetic field
- Start-counter  $\rightarrow$  start times to trigger
- TOF detectors → charged-particle energy deposition and time-of-flight
- Drift chambers (DC) → charged particle trajectories

