

Hadronization Analysis of Protons with eg2 Data

Michael H. Wood Canisius College, Buffalo, NY, USA

Hadronization

Study hard processes in nuclei to probe the QCD confinement dynamics: Color propagation (CP) and fragmentation - Hadronization process

Motivation - E_{e+} =27 GeV studies by Hermes

Production time τ_p : Time spent by a deconfined quark to neutralize its color charge. Stimulated by energy loss to the medium by gluon exchange. <u>Observable</u>: transverse momentum broadening. $\Delta p_T^2 = \langle p_A^2 \rangle - \langle p_D^2 \rangle$

The eg2 Hadronization Program

Mesons

 π^+ , π^- - S. Moran, R. Dupre, H. Hakobyan (Analysis review)

 π^0 - T. Mineeva (Ad hoc review)

 K^0 - A How do the mesons and baryons compare? η - Ο. How does the Λ(1520) and proton compare? ω - Α. Dorquez

Di-pions - A. Radic, M. Arratia

Baryons

Λ(1520) - T. Chetry, L. El Fassi (Analysis review)

Proton - M. Wood

Results from Hermes

Hermes results

A. Airapetian, *et al.*, Nucl. Phys. B 780 (2007) 1.

E= 27 GeV; Positron beam

Pions and kaons give similar attenuation

Results from Hermes

The results for protons cannot really be related to those for any of the other particles. Because protons are already present in a nucleus, an appreciable fraction of them may not come from hadronization.

Multidimensional Analysis by HERMES

A. Airapetian, et al., Eur. Phys. J. A (2011) 47: 113

Multidimensional Analysis by HERMES

A. Airapetian, et al., Eur. Phys. J. A (2011) 47: 113

Kinematics

Event Selection

Applied electron ID cuts

EC E_{tot}/P sampling fraction

CC # photo-electrons > 28

 $EC E_{IN} > 60 MeV$

Momentum > 650 MeV

Proton ID

Select positively charged particles and make a cut on the TOF based on the proton mass.

Number of protons per target

Run Period	D2	Solid
С	9.8M	13.2M
Fe	17.4M	36.0M
Pb	16.1M	19.9M

Multiplicity Ratios - Carbon

z_{LC} - Light Cone z_h

Fraction of hadron energy to the virtual photon energy

$$z_h = \frac{E_h}{\nu}$$

Expand the range by transforming onto the Light Cone.

 $z_{LC} = \frac{p_h^+}{P^+} = \frac{E_h + p_{z,h}}{M_h + \nu}$

William K. Brooks and Jorge A. Lopez, <u>arXiv:2004.07236</u> [hep-ph]

Multiplicity Ratios - Iron

Multiplicity Ratios - Lead

Neutral pions - results by T. Mineeva

3D binning - Q2, ν , z_h

Currently under review.

The Plan

The analysis is proceeding

- Analysis of eg2 data (M. H. Wood)
- Running the simulations (Juan Pablo Garces, UTFSM undergraduate) •

Next steps

Apply fiducial cuts

Apply acceptance correction Apply e- normalization Apply other corrections Study p_T^2 and $< \Delta p_T^2 >$

Backup slides

The Program

DIS channels: *stable* hadrons, accessible with 11 GeV JLab experiment PR12-06-117

Actively underway with existing 5 GeV data

meson	сτ	mass	flavor content	baryon	сτ	mass	flavor content
π^0	25 nm	0.13	uudd	p	stable	0.94	ud
π^+,π^-	7.8 m	0.14	ud, du	\bar{p}	stable	0.94	ud
η	170 pm	0.55	uuddss	Δ	79 mm	1.1	uds
ω	23 fm	0.78	uuddss	A(1520)	13 fm	1.5	uds
η'	0.98 pm	0.96	uuddss	Σ^+	24 mm	1.2	us
ϕ	44 fm	1.0	uuddss	Σ	44 mm	1.2	ds
f1	8 fm	1.3	uuddss	Σ^0	22 pm	1.2	uds
K	27 mm	0.50	ds	Ξ^0	87 mm	1.3	us
K^+, K^-	3.7 m	0.49	us, us	<u> </u>	49 mm	1.3	ds