Updates on the ω Hadronization Analysis

Andrés Bórquez^a

<u>Advisors</u>: Hayk Hakobyan^a, Michael H. Wood^b, Taisiya Mineeva^a

^a Universidad Técnica Federico Santa María, Valparaíso, Chile ^b Canisius College, Buffalo, NY, United States

CLAS Collaboration Meeting - March 2021

Outline

- 1. Introduction:
 - Hadronization
 - SIDIS
 - Experimental variables
 - Multiplicity Ratio
 - The meson sector
 - CLAS6 EG2 experiment
- 2. Particle ID Scheme Kinematic Cuts
- *3.* ω Reconstruction
- 4. Binning
- 5. Event-Mixing Technique
- 6. Multiplicity Ratio Results
- 7. Acceptance Correction
- 8. Next steps

Hadronization is the formation of quarks and gluons into hadrons. But how do nuclei of different sizes impact on this process?

Semi-Inclusive Deep Inelastic Scattering

The study of hadron formation can be done through the process of **D**eep Inelastic **S**cattering (**DIS**), which allows us to probe the **internal structure of the nuclear medium**.

 $eA \rightarrow e'X$

The **Semi-Inclusive Deep Inelastic Scattering** (**SIDIS**) is an experimental technique where we can detect an extra hadron *h* at the final state.

Experimental variables

In the laboratory frame of reference.

Electron variables:

- $Q^2 = 4 E_b E' \sin^2(\theta/2)$: virtuality of the probe electron.
- $v = E_b E'$: energy transferred from the electron to the target.

Hadron variables:

- $z = E_h/v$: fraction of the virtual photon energy carried by the produced hadron.
- $p_T^2 = p_h^2 (1 \cos(\theta_{PQ}))$: transversal momentum of the hadron w.r.t. virtual photon direction.

Multiplicity Ratio

The experimental **observable** to measure is the **ratio of hadron multiplicities** R_A^h observed in the scattering of a nucleus (*A*) to those on the deuteron (*D*):

Where N_h is the number of semi-inclusive hadrons h in a given (Q^2, v, z, p_T^2) bin and N_e^{DIS} the number of inclusive DIS electrons in the same (Q^2, v) bin.

HERMES Collaboration. *Hadronization in semi-inclusive deep-inelastic scattering on nuclei.* Nucl. Phys. B **780,** 1-27 (2007)

The meson sector

- This analysis follows a line of investigation in the hadronization of the meson sector,
 - π^0 analysis from Taisiya Mineeva^a
 - η meson hadronization from Orlando Soto^b

Particle	π^0	η	ω	
Charge	0	0	0	
Type of meson	Pseudoscalar	Pseudoscalar	Vector	
Mass (GeV)	~ 0.135	~ 0.548	~ 0.782	
Mean lifetime (s)	$\sim 10^{-17}$	$\sim 10^{-19}$	$\sim 10^{-23}$	
Quark content	$uar{u} - dar{d}$	$u\bar{u} + d\bar{d} - 2s\bar{s}$	$u\bar{u} + d\bar{d}$	
Decay channels (%)	$\pi^0 \to \gamma \gamma \ (99\%)$	$ \begin{array}{c} \eta \to \gamma \gamma \; (39\%) \\ \eta \to \pi^0 \pi^0 \pi^0 \; (33\%) \\ \eta \to \pi^+ \pi^- \pi^0 \; (23\%) \end{array} $	$\omega \rightarrow \pi^{+}\pi^{-}\pi^{0} (89\%)$ $\omega \rightarrow \pi^{0}\gamma (8\%)$	

• World's first study on the hadronization of the ω meson.

^aT. Mineeva et al. *Neutral Pion Multiplicity Ratios from SIDIS Lepton-nuclear Scattering*. CLAS Analysis Note ^bO. Soto. *Hadronization studies of* η *mesons using the CLAS spectrometer*. Ph.D. Thesis (2018)

CLAS6 EG2 Experiment

This experiment consisted of a 5 GeV electron beam incident on a double-target system where the beam passed through a **liquid target** *D* (**Deuterium**) and a **solid heavy target** *A*(*C*, *Fe*, *Pb*) simultaneously positioned in the **beam line**.

Main features: same luminosity for different nuclei, and reduction of systematic uncertainties.

9

Particle ID Scheme

Electron ID and **Charged Pions ID** are based on Sebastián Moran's (*et al.*) analysis, recently submitted for a CLAS Analysis Note review.

Photons ID is based on Taisiya Mineeva's approved CLAS Analysis Note.

Kinematic Cuts

The **kinematic region** of the **DIS** regime is:

- $Q^2 > 1$ GeV², necessary virtuality to probe nucleon substructure.
- *W* > 2 GeV, to avoid contamination from resonance region.
- $y_B = v/E_b < 0.85$, to reduce size of radiative effects.

π^0 Reconstruction

Gaussian fit around π^0 peak. Horizontal lines represent 3σ cut around obtained μ .

K⁰ Exclusion

Gaussian fit around K^0 peak. Horizontal lines represent 1σ cut around obtained μ .

Removal of bremsstrahlung photons

"Most of the bremsstrahlung photons from the electron are emitted either in the direction of incoming or scattered electron." [Schiff, 1952]

ω Invariant Mass Reconstruction

After keeping all the ω candidates from the events with the required multiplicity of final-state particles, **at least** ($1\pi^+$, $1\pi^-$, 2γ), we can reconstruct the ω mass with a 4-particle system.

Binning

The binning to present the **multiplicity ratios** is one-dimensional and equally distributed.

$Q^{2}\left(GeV^{2}\right)$	1.0	1.25	1.50	1.87	4.0
v (GeV)	2.2	3.23	3.57	3.86	4.2
z _h	0.5	0.56	0.62	0.72	0.9
$p_T^2\left(GeV^2\right)$	0.0	0.07	0.18	0.35	1.5

Event-mixing rules

Decay channel: $\omega \rightarrow \pi^+ \pi^- \pi^0 \rightarrow \pi^+ \pi^- \gamma \gamma$

- Keep all events with the minimum amount of final-state particles. ("candidate event")
- Combine and form all the possible $\boldsymbol{\omega}$ candidates.
- For each formed $\boldsymbol{\omega}$ candidate,
 - 1. swap the π^+ by a **random** π^+ from **candidate events** from **same target**
 - 2. swap the π^- by a **random** π^-
 - 3. swap the π^0 by a random π^0
 - 4. swap the three pions with **random** π^+ , π^- , π^0 (all from different events)
- Add the new 4 distributions.

[CERN-THESIS-2018-313]

F. Jonas. Measurement of ω and η mesons via their three pion decay with ALICE in *pp* collisions...

Event-mixing results – Deuterium data

Number of ω after integration of fit function

Multiplicity Ratios: ω

Acceptance Correction

Correction that covers the imperfections of the detector, such as: detection, track reconstruction and event selection efficiencies.

$$A = \frac{N_{\omega}^{rec}(Q^2, \nu, z_h, p_T^2)}{N_{\omega}^{gen}(Q^2, \nu, z_h, p_T^2)} \to N_{\omega}^{corr} = \frac{N_{\omega}}{A}$$

Simulation chain:

- **LEPTO**: MC event generator, slightly modified to keep all events with **at least one** *ω*.
- GSIM
- GPP
- user_ana or recsis
- ClasTool

Comparison between Data and Sim. Reconstructed

Event-mixing – Deuterium sim. reconstructed

Acceptance Factors: ω

Multiplicity Ratios: ω – Acceptance Corrected (Comparison)

Multiplicity Ratios: ω – Acceptance Corrected

Next steps

- Radiative corrections.
- Systematic studies.
- Submit η and ω CLAS Analysis Note.

Thank you for your attention.

Backup

Comparison between Data and Event-Mixing

Event-mixing results

- Data - Mixed Event Bkg

To **normalize** the **mixed**event background to the data, it is scaled by the following factor:

 $\frac{integral_{R1}^{data} + integral_{R2}^{data}}{integral_{R1}^{bkg} + integral_{R2}^{bkg}}$

Where **R1** and **R2** stand for the left and right sidebands, respectively.

