Back-to-back hadron asymmetries

H. Avakian (JLab), T. Hayward (W&M)

CLAS12 collaboration Meeting, March 3, 2021

- Long range hadronic correlations and Fracture Functions
- SSA measurements in semi-inclusive nucleon-pion
 production
 - Inclusive proton pion SSAs
 - Inclusive proton di-hadrons SSAs
 - Other data sets
- LUND-MC and rec. efficiencies of protons and pions
 - Comparing data with MC: target vs current fragmentation
- Conclusions

Hadronic long-range correlations

Modeling of q-q-bar correlations with spins and momenta in the process (not in PYTHIA) will be important for understanding of the dynamics

B2B hadron production in SIDIS: Theory

 $imes \delta^2 (\mathbf{k}_\perp - \mathbf{k}'_\perp - \mathbf{P}_{1\perp}/z_1) \, f(\mathbf{k}_\perp, \mathbf{k}'_\perp, \ldots).$

Probability to produce a hadron for a given longitudinally polarized quark

3

B2B hadron production in SIDIS: First measurements

4

SSAs in ep \rightarrow e'p π +X production

Comparing with single hadron SSAs:

 $\vec{e}p \rightarrow \vec{e}p\pi X$: Correlation SSAs

Jefferson Lab

H. Avakian, CCM, March 3

B2B SSA Extraction methods

Two approaches with different sensitivity to acceptance and statistics, yield consistent values for the $sin\Delta\phi$, moment $sin2\Delta\phi$ seem to be small, and require more detailed studies

SSAs kinematic dependences: $ep \rightarrow e'p\pi\pi X$

RGA-inbending

 $\begin{array}{l} Q^2 > 1, W^2 > 4, E_e > 2.6 \; GeV \\ E_p > 0.5, E\pi + > 1.2 \\ \Delta Vz(p-\pi+) < 2cm \\ M_{e\pi X} > 1.6, \; M_{ep\pi X} > 0.6 \; (suppress \\ exclusive) \\ \Delta \eta(p-\pi+) > 1(current/target) \end{array}$

The SSA seem to have week dependence on x, dropping at large z (phase space for large P_T limited)

H. Avakian, CCM, March 3

SSAs kinematic dependences: $ep \rightarrow e'p\pi\pi X$

H. Avakian, CCM, March 3

SSAs kinematic dependences: $ep \rightarrow e'p\pi\pi X$

RGA-inbending

The SSA seem to depend on the missing mass of the the e'p π X (more studies needed to define the source)

H. Avakian, CCM, March 3

B2B SSAs: $ep \rightarrow e'p\pi - X vs ep \rightarrow p\pi + X$

Using the RGA "golden" run list

B2B SSA has unique features

- There is no significant z-dependence
- π⁻p and π⁺p SSAs are practically the same in the z-region of 0.2<z<0.6 (ρ0?)

B2B SSA: $ep \rightarrow p\pi + X$ compatibility with CLAS6

The behavior and the magnitude of observed SSAs consistent with studies performed with CLAS6 data sets

B2B SSA $ep \rightarrow p\pi + X$: inbending vs outbending

The behavior and the magnitude of observed SSAs consistent for inbending and outbending RGA sets

B2B SSAs $ep \rightarrow p\pi + X$ " the cross check

No significant z-dependence below z~0.7 Extractions of SSA consistent between 2 completely independent analysis (minimizing the negative log of the likelihood)

B2B SSA ep \rightarrow p π +X: SF ratio

No indication for a significant P_T -dependence for the sample integrated up to z=0.7

The long range correlation observed between hadrons in target and current fragmentation is directly related to the ratio >16%

CLAS12 TFR Studies: Data vs MC

Jefferson Lab

Protons: data vs clasdis

Variables used to see the kinematics in current and target fragmentation X_{F} , rapidity

Data and clasdis clas12 MC are consistent No significant dependence on kinematical variables for rec.eff.

π + parents in ep \rightarrow e'p π +X events

Tiny fraction of pions come from Δ ++ at z~0.2, and at large z mainly from string and ρ

SSAs for other hadrons: $ep \rightarrow e'p\pi\pi X$

H. Avakian, CCM, March 3

RGB SSAs: $ed \rightarrow e'p\pi - X vs ed \rightarrow e'n\pi - X$

RGB-inb+outbending (10%)

RGB ed \rightarrow e'p π -X ed \rightarrow e'n π -X seem to have opposite signs for low z Crucial to have a good neutron ID !!!

SUMMARY

- Significant B2B asymmetries observed with CLAS12 indicating strong long range correlations between target and current fragmentation regions
- B2B asymmetries observed with CLAS12 are consistent with preliminary studies performed with clas6
- Significant SSAs observed in nucleon-pion correlations for all pions in RGA and RGB, could be addressed in separate studies
- Significant negative SSA is expected for inclusive proton production (may be also neutron)
- LUND-MC describes well the proton-pion data in a major part of accessible energy range and can be used to extract the acceptance in multidimensional bins (neutrons are flooded by photon)

Plans:

Converge with the cross check in multi-dimensional space

Publish first the ep \rightarrow e'p π ⁺X (the analysis note and the draft of the paper in progress)

Extend studies to RGB, both for ed $\rightarrow e'p\pi^{+/-}X$, ed $\rightarrow e'n\pi^{+/-}X$ (D. Thi Nguyen, A. Gadsby) Extend studies of sin $\Delta \phi$ moment to 2pion correlations (C.Dilks) Extract the beam SSA in $ep \rightarrow epX$ (D. O'Neil) Studies of cos2 $\Delta \phi$ moment for pions and nucleons(M. Arratia, S. Paul)

Support slides

$ep \rightarrow e'p\pi^+X$: distribution shapes

π - parents in ep \rightarrow e'p π -X events

Tiny fraction of pions come from Δ at z~0.2, and at large z mainly from string and ρ

B2B SSA Extraction methods

SSAs for other hadrons: $ed \rightarrow e'p\pi - X vs ed \rightarrow e'n\pi - X$

Unintegrated DSIDIS cross-section

$$\frac{d\sigma^{\ell(l,\lambda)+N(P_{N},S)\to\ell(l')+h_{1}(P_{1})+h_{2}(P_{2})+X}}{dxdQ^{2}d\phi_{S}dzd^{2}P_{T1}d\zeta d^{2}P_{T2}} = \\
= \frac{\alpha^{2}x}{Q^{4}y} (1+(1-y)^{2}) \begin{pmatrix} \hat{u}^{h_{2}} \otimes D_{1}^{h_{1}} + \lambda D_{ll}(y)\hat{l}^{h_{2}} \otimes D_{1}^{h_{1}} \\
+ \hat{t}^{h_{2}} \otimes \frac{\mathbf{p}_{T} \times \mathbf{s'}_{T}}{m_{h_{1}}} H_{1}^{h_{1}} \end{pmatrix} \\
= \frac{\alpha^{2}x}{Q^{4}y} (1+(1-y)^{2}) \begin{pmatrix} \sigma_{UU} + S_{L}\sigma_{UL} + S_{T}\sigma_{UT} + \\ \lambda D_{ll}(\sigma_{LU} + S_{L}\sigma_{LL} + S_{T}\sigma_{LT}) \end{pmatrix}$$

PINAN 2011, Marrakech, September 30, 2011

Aram Kotzinian

Unintegrated DSIDIS cross-section

 $F_{...}^{\hat{u} \cdot D} \text{ depend on } x, z, \zeta, P_{T1}^{2}, P_{T2}^{2} \text{ and } (\mathbf{P}_{T1} \cdot \mathbf{P}_{T2})$ $\hat{u}_{q/p}^{\pi^{\pm}}(x, k_{T}^{2}, \zeta, P_{T}^{2}, \mathbf{k}_{T} \cdot \mathbf{P}_{T}) = u_{q/p}^{\pi^{\pm}}(x, k_{T}^{2}, \zeta, P_{T}^{2}) (1 + a_{1} \cos(\phi_{h} - \phi_{q}) + a_{2} \cos 2(\phi_{h} - \phi_{q}) + \cdots)$ $a_{i} = a_{i}(x, k_{T}^{2}, \zeta, P_{T}^{2})$

 $a_2 \ll a_1$

For pions $cos2\Delta\phi$ seem to be small To be checked on proton-pion pairs

SSAs kinematic dependences: $ep \rightarrow e'p\pi\pi X$

Data vs MC Rec. eff. of protons

B2B SSA Extraction methods

https://userweb.jlab.org/~avakian/tmp/clasnotedvcs.pdf

SSAs in ep \rightarrow e'p π +X production (RGA)

Using the RGA "golden" run list (~30%)

Observed SSAs consistent in kinematic dependences and size with SSA observed by CLAS6!

Neutrons in RGB (inb) vs clasdis MC

Quite a few events have a photon in addition to the neutron at practically the same theta and phi Most neutrons are most likely photons

SSAs in ep \rightarrow e'p π +X: RGA vs RGB

ep→e'p π +X SSAs in RGB consistent in kinematic dependences and size with SSA from RGA

Neutrons in RGB (inb) vs MC

Small fraction of MC reconstructed neutrons have link to neutrons

Neutrons in RGB (inb)

Edges in phi contribute to higher energies, most likely photons

RGB: MC vs 5nA data

Reasonable description of the data (filled circles) by MC (open circles)

Neutron eff.

Neutron eff.

Red→ generated Line→ reconstructed Circles RGB-inbending

