

Introduction

MonteCarlo and Data comparisons

Multiplicity extraction

Phase space effects for transverse momentum extractions

Only π + is shown but the analysis is done also on π -

Introduction

►Z K⊥	$Q^2 = -(l - l')^2$	Transfer momentum	THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DO	
	$W^2 = (P + q)^2$	Squared Invariant mass of the final state		
	$x = \frac{Q^2}{2P \cdot q}$	Quark longitudinal momentum fraction		
	$y = \frac{P \cdot q}{P \cdot l}$	Fractional energy of the virtual photon		
	$z = \frac{P \cdot P_h}{P \cdot q}$	Final state hadron momentum fraction		
	P _{hT}	Transverse Momentum of the hadron		

$$m_N^h(x, z, P_{hT}^2, Q^2) = \frac{\pi F_{UU,T}(x, z, P_{hT}^2, Q^2) + \pi \varepsilon F_{UU,L}(x, z, P_{hT}^2, Q^2)}{F_T(x, Q^2) + \varepsilon F_L(x, Q^2)}$$

< 2 >

Event Selection

Q² >1 GeV² | W > 2GeV | y < 0.75

Standard RG-A common cuts for π+

- Minimum energy cut PCAL
- Electron Vertex -12 cm to 13 cm
- **Pion Vertex Cut:** |El Vertex - Pion Vertex | <20 cm
- **Chi2PID: following the momentum parametrization** of RG-A Common Analysis
- Missing Mass> 1.5 GeV/c

Giovanni Angelini

-400

Pion momenta between 1.25 GeV/c - 5 GeV/c

PCAL:

Sampling Fraction: 3.5 sigmas

< 3 >

Projection of the final multiplicity analysis

GW

CLOSED EBAF Large Acceptance Spectrometer

MC vs Data: Overview

GW

Giovanni Angelini

< 5 >

DATA vs MC: Theta Distributions

GW

Giovanni Angelini

< 6 >

GW

DATA vs MC: Phi distributions

Ratio: MC/DATA Normalized to the same reconstructed electrons

Giovanni Angelini

< 7 >

DATA vs MC: Missing Mass eπ+X

MC VS DATA : PCAL

The plot are normalized for the same number of DIS electron reconstructed (in a trustable interval of momentum and angle)

S1

GW

MC VS DATA : π+ Chi2PID

GW

Multiplicity vs z

Multiplicity vs z and PT²:Acceptances π⁻

If we reconstructed < 10 events && If we generated <100 events || reconstructed>generated The data point is removed

Giovanni Angelini

THE GEORGE WASHINGTON UNIVERSITY

ASHINGTON, D

GW

Giovanni Angelini

<13>

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC

On the extraction on transverse momentum

 $f_1^q \otimes D_1^q = \int d^2 k_\perp d^2 p_\perp \delta^2 \left(k_\perp - p_\perp - \frac{1}{z} P_{h\perp} \right) f_1^q(x, k_\perp) D_1^q(z, p_\perp)$

We would like to extract average transverse momentum from our data

$$m_N^h(x,z,\boldsymbol{P}_{hT}^2) = \frac{\pi}{\sum_a e_a^2 f_1^a(x)} \times \sum_a e_a^2 f_1^a(x) D_1^{a \to h}(z) \frac{e^{-\boldsymbol{P}_{hT}^2/\left(z^2 \langle \boldsymbol{k}_{\perp,a}^2 \rangle + \langle \boldsymbol{P}_{\perp,a \to h}^2 \rangle\right)}}{\pi\left(z^2 \langle \boldsymbol{k}_{\perp,a}^2 \rangle + \langle \boldsymbol{P}_{\perp,a \to h}^2 \rangle\right)}$$

Giovanni Angelini

$$\langle {m P}_{hT,a}^2
angle = z^2 \langle {m k}_{\perp,a}^2
angle + \langle {m P}_{\perp,a
ightarrow h}^2
angle \,.$$

Momentum	Physical description	
k	4-momentum of parton in distribution function	
p	4-momentum of fragmenting parton	
$m{k}_{\perp}$	light-cone transverse momentum of parton in distribution function	
P_{\perp}	light-cone transverse momentum of final hadron w.r.t. fragmenting parton	
P_{hT}	light-cone transverse momentum of final hadron w.r.t. virtual photon	

From: Investigations into the flavor dependence of partonic transverse momentum Signori et Al., https://arxiv.org/pdf/1309.3507.pdf

In order to reconstruct the initial parton transverse momentum one should:

- Assume a functional dependency of Pion transverse momentum that link it to the parton transverse momentum
- -Correct for effects due to detector and limit phase space:

1)Correction from detector using MC description of the detector (acceptance corrected data). 2) Correction from phase space.

This is an on going work.

Here I am going to show you the effects of phase space with pion produced from strings, omegas produced from strings, and pion decayed from those omegas by using a dedicated MC.

Extracting transverse momentum

GW

GW

Extracting transverse momentum

Don't look at the y axis, the normalization is different but focus on the differences between the dotted line (generated function) to the points : what is generated within the phase space .

The phase space effects depends by the particle type. So the corrections will be model dependent.

Giovanni Angelini

<17>

Extracting transverse momentum

We need to correct the data for the phase space effect, but since the correction depends on the VM, it will be dependent to the VM ratio used in our models.

Summary + future plans

MC in-bending completed (about 2x data) and available at: /work/clas12/rg-a/montecarlo/fall2018/torus-1/clasdis/bg/

- The measurement of charged pion multiplicity is being extracted using CLAS12.
- We are working on improve our fiducial cuts.
- Effect of phase spaces and VM production under study.
- Study on systematics and radiative effects will be performed.
- We expect to complete this analysis and submit an analysis note by this summer.

This work is supported by the DOE grant DE-SC0016583

Giovanni Angelini

MC VS DATA : PCAL

< 20>

MC VS DATA : PCAL

The plot are normalized for the same number of DIS electron reconstructed (in a trustable interval of momentum and angle)

Giovanni Angelini

THE GEORGE WASHINGTON UNIVERSITY WASHINGTON, DC

<21>

In order to trust the acceptances and use them, we want to ensure that the reconstruction work similarly in data and MC.

To do that I have looked at the reconstructed sample:

ePπ^- X

and look in how many of these samples there were reconstructed. as $eP\pi^{-}\pi^{+}$ and nothing else.

Compared this ratio between data and MC can gives us a first idea if we can trust our acceptances.

MC used is about 80% of DATA

Giovanni Angelini

Study of acceptances (very preliminary)

Giovanni Angelini

MC VS DATA : PCAL

THE GEORGE WASHINGTON UNIVERSITY

Less effects at higher

Giovanni Angelini

MC VS DATA : PCAL

Giovanni Angelini

MC VS DATA : PCAL

THE GEORGE WASHINGTON UNIVERSITY

WASHINGTON, DC