η and η' electroproduction using CLAS12 RGK 6.5 GeV Golden Runs

Izzy Illari

The George Washington University

March 4, 2021

THE GEORGE WASHINGTON UNIVERSITY

Why study η and η' electroproduction?

- CLAS12 physics program
 - ▶ new data with a variety of beam energies
 - ▶ studies of nucleon resonance spectrum & structure in electroproduction of variety of final states
- $\blacksquare \eta \& \eta'$ electroproduction:
 - \triangleright complementary tool to study nucleon resonances N^*
 - ▶ both $\eta \& \eta'$ act as "isospin filters"
- RGK 6.5 GeV data:
 - ▶ smaller center of mass W range $\sim (0.5\text{-}3.5)\text{GeV}$ and photon virtuality Q² range $\sim (0\text{-}6)\text{GeV}^2$ than RGA data
 - easier to see resonances for low W

Data

- \blacksquare E_{beam} = 6.535 GeV
- Data: RGK
 - ► Golden runs
 - ▶ 5893, 5901, 5906, 5907, 5913, 5916, 5920, 5928, 5929, 5936, 5940, 5941, 5949, 5950, 5951, 5962, 5968, 5969, 5971
 - ▶ 60 nA beam current
 - ► trigger version 6 (FT out)
 - $ightharpoonup Q^2 \sim (0-6) \text{GeV}^2 \& W \sim (0.5-3.5) \text{GeV}$
- wagon: $ep\gamma X$

run	type	file size	events
5893	DST	202 GB	~100 mil
5893	$ep\gamma$	742 MB	\sim 530k
Golden Runs	$ep\gamma$	18 GB	\sim 13 mil

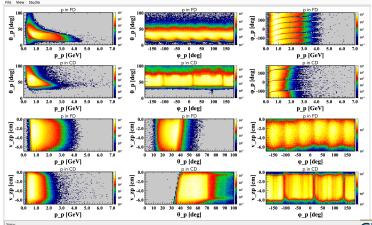
Data

■ Reaction: $ep \to ep\eta$

$\eta(548)$	Mode	Channel	BR
	Neutral		72%
		$ ightarrow 2\gamma$	39%
		$ ightarrow 3\pi^0 ightarrow 6\gamma$	33%
	Charged		28%
		$\rightarrow \pi^+\pi^-\pi^0 \rightarrow \pi^+\pi^-2\gamma$	23%

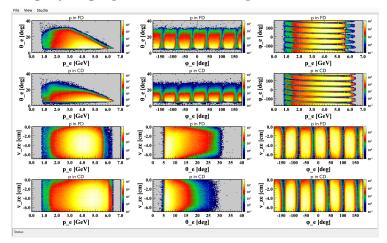
■ Reaction: $ep \to ep\eta'$

$\eta'(958)$	Channel	BR
	$\rightarrow \pi^+\pi^-\eta$	43%
	$\rho^0 \gamma \to \pi^+ \pi^- \gamma$	29%
	$ o \pi^0 \pi^0 \eta o 6 \gamma$	23%

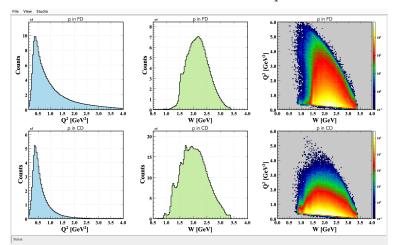

■ caveat: difficulty getting all $6\gamma \Longrightarrow \text{ID } 4\gamma \& \text{find final } 2\gamma$ P. Zyla et al. (Particle Data Group), "Review of Particle Physics", **PTEP 2020**, 083C01 (2020).

Process for analysis

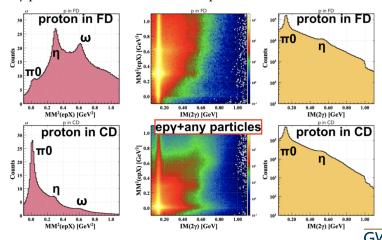
- asses data: which channels of η and η' suitable for N^* analysis
- run $ep\gamma$ wagon to skim data for:
 - ▶ electrons in FD
 - ▶ protons in FD or CD
 - $ightharpoonup \gamma$ in FD
 - \blacktriangleright all channels have ep and at least 1γ
- separate channels by if proton is in FD or CD


proton kinematics

- $\sim 24.6\%$ of protons in FD & $\sim 75.4\%$ in CD
- in FD if $\theta < \sim 40^{\circ}$ & in CD if $\theta > \sim 40^{\circ}$
- protons with lower p in CD

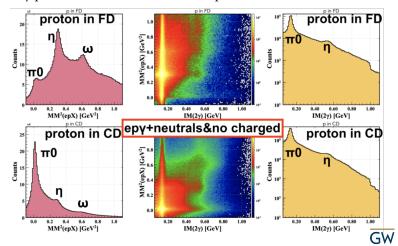

electron kinematics

- \blacksquare smaller θ for electrons when proton in CD
- slightly larger p for electrons when proton in CD


Q^2 and W

- \blacksquare larger Q^2 range when protons in FD
- more resonances visible in W for when protons in CD

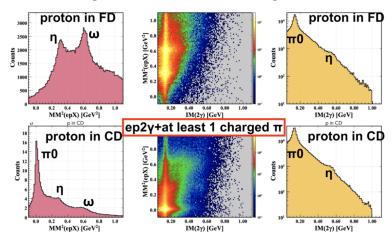
$ep\gamma X$


- explicitly detect $ep\gamma$ & allow any number of neutral/charged particles
- \bullet η peak dominates MM² when proton in FD

Why Intro steps p^+e^- Q² and W several final states charged pions conclusion acknowledgemen 00 0 0 0 0 0 0

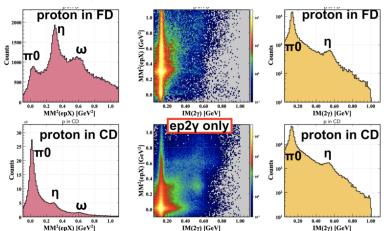
$ep\gamma X_n$

- explicitly detect $ep\gamma$ & allow any number of neutral but no charged particles
- $\blacksquare \eta$ peak dominates MM² when proton in FD

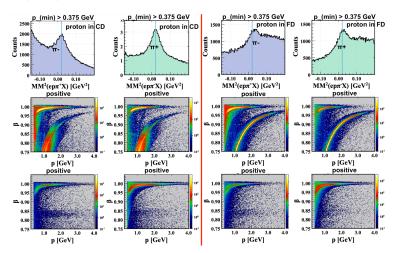


10/15

0 00 0 0 0 0 0000 0 0 0


$ep2\gamma\pi^{\pm}X_{\pm}$

- explicitly detect $ep2\gamma$ and at least one charged pion
- no π^0 & ω peak dominates MM² when proton in FD



$ep2\gamma$

- explicitly detect $ep2\gamma$ and nothing else
- prominant η & reduced ω peak in MM² when proton in FD

charged pions

Conclusions

- \blacksquare smaller Q^2 range & more resonances in W when proton in CD
- comparatively more η than π^0 in MM² when proton in FD
- IM(2γ) dominated by π^0
- have to deal with background when looking at MM² of charged pions
- Future Steps:
 - ► run MC simulations (PYTHIA, phase space generators)
 - ightharpoonup create ep wagon to compare to $ep\gamma$ skim results

Acknowledgements

A thank you to B. Briscoe, V. Burkert, I. Strakovsky, the RGK group, the Software group, and the CLAS12 collaboration for their help and support while performing this research. This work was supported in part by the US Department of Energy, Office of Science, Office of Nuclear Physics, under Award No. DE-SC0016583.