Inclusive electron scattering in the resonance region CLAS Collaboration Meeting

Astrid N. Hiller Blin

ahblin@jlab.org

Victor Mokeev, Wally Melnitchouk

Phys. Rev. C100 (2019) 035201 1904.08016 [hep-ph]

March 4, 2021

Nucleon excitation structure

Inclusive electron scattering

$$\begin{split} F_1 &\propto \sigma_T(W, Q^2) \\ F_2 &\propto \sigma_T(W, Q^2) + \sigma_L(W, Q^2) \\ F_L &\propto \sigma_L(W, Q^2) \end{split}$$

- Structure functions/cross sections give access to PDFs
- Resonance region displays highly non-trivial behaviour with x and Q²
- Precise CLAS data; CLAS12 to reach 0.05 GeV² < Q² < 12 GeV², W up to 4 GeV
- Tests on quark-hadron duality and access to **PDFs at large x** in global analyses

Longitudinal vs. transverse separation

Hall C L/T data

The Hall C L/T separated data cover the resonance region at values of Q² that are currently also available from CLAS: can be used to separate out F_1 , F_2 , F_L from CLAS cross sections.

Complementing inclusive measurements: exclusive electroproduction channels

- World and CLAS data on longitudinal and transverse electrocouplings
 https://userweb.jlab.org/~mokeev/resonance_electrocouplings/
 https://userweb.jlab.org/~isupov/couplings/
- Allow us to determine each of the resonant contributions separately

From exclusive to inclusive electron scattering

Electrocouplings from data

Resonant contributions at different Q²

Tails of resonances give substantial contributions to neighbouring regions!

Second resonance region decreases less with Q²: intricate differences in Q² evolution of electrouplings.

The longitudinal structure function

2nd and 3rd resonance regions of F_2 and F_L remain strong at all Q^2 : studies of respective electrocouplings at larger Q^2 with CLAS12 is very promising.

Q² evolution of ratio resonance/total

- Resonance contributions decrease with Q², but so do the total contributions
- Δ(1232): even at 4 GeV², ~50% significance; 2nd region: nearly flat ratio
- Points to non-vanishing resonances!

Comparison with PDF fits to DIS region

The **PDF fits** with target-mass corrections and higher-twist contributions are **compatible** with averaged data in the resonance region: opportunities for PDFs at large x.

Truncated moments

Integration over energies: better comparison in regions with resonant structures: global duality onset at $Q^2 > 3.0 \ GeV^2$ motivates CLAS12 studies! Resonance contributions stay relatively large in the whole range.

Polarized structure functions

Summary and outlook

- Computed resonant contributions to structure functions with interference effects.
- CLAS electrocouplings allow mapping of highly non-trivial behaviour for first time;
 L/T separation made possible by Hall C data.
- **Resonances** compared to full data **do not seem to vanish** at larger Q^2 : promising prospects for CLAS12!
- Towards an insight into PDFs at large x and duality behavior in truncated moments.
- Extension to polarized structure functions.