GRINCH GMn Readiness Review

Bradley Yale

02/17/2021

Expected e^{-}/π^{-} Efficiencies e- efficiency ($\eta_{p_{e}}$) vs N_{p.e} cut π-/e- vs E_e'(GeV) for E_=8.8 GeV π -/e- vs E_e'(GeV) for E_=6.6 GeV x^2 / ndf 0.02854/6 x^2 / ndf 0 07709 / 6 ÷ 12 ę 16 Prob Prob 10 14 0.8 Constant 9.322 ± 0.07146 Constant 8.927 ± 0.06789 12 10 0.6 Slope -3.224 ± 0.03217 Slope -3.538 ± 0.03764 0.4 0.2 2.2 2.4 2.6 2.8 3 2 2.4 2.6 20 $25_{N_{p,e}} \frac{30}{cut}$ 3.2 1.8 2.2 10 15 E_e'(GeV) E_o'(GeV) π - efficiency (η_{m}) vs P (MeV) for different N_ cut N_{p.e} Entries Pion threshold @ 1atm: 2.7 GeV

۲

10

 10^{-2}

10-3

=11

=14

=20

=23 =26

=29 N = 32

ion threshold

Ω

P (MeV)

1600 1800 2000 2200 2400 2600 2800 3000 3200

To achieve $\eta_{\pi} < 0.05$, $\eta_{e^-} \approx 1$ => 9 p.e. needed per electron 150 E 100

3727 Mean 21.07 ± 0.0949 Average: 250 E RMS 5.794 ± 0.06711 21.0 p.e. 200 E

Independent simulations by Huan Yao and Eric Fuchey found ~21 p.e. per electron on average (2.4 p.e. /PMT * 8.6 PMTs $/e^{-}$), after accounting for quantum efficiency, mirror reflectivity

GRINCH Equipment List

Mirror Alignment Check

Dispersive Angles vs. Vertical Position (corrected)

Non-dispersive Angles vs. Horizontal Position (corrected)

Signal Timing (cosmics)

All readout signals fit within a ~450ns window

signal width: ~20ns

Thresholds tuned to minimally reject noise (~1.3V measured)

New and pressing issue: AC Noise

1.4µs noise, measured at weldment

The Hodoscope is also seeing this Currently under investigation

All GRINCH voltages off + NINO disconnected at front end

Conclusion: Something is not grounded properly at the translator rack This must be solved before further electronics commissioning!

Cables, PMTs, DAQ are working

Reflections are present in all 510 channels (so cables are undamaged after conduit work), but the noise issue must be resolved ASAP Tested HV+PMTs after temporarily resealing door, signals are present at the front end

CODA3 works with the DAQ setup, but the decoder needs to be updated

Pre-Hall Tasks and Workforce

Me (50% shared w/ Hall B)

- byale@wm.edu

Todd Averett (100% minus teaching)
<u>tdaver@wm.edu</u>

Task: New gasket installation

Cracks appeared in the gasket used to seal the GRINCH door, and needs to be replaced

New Viton© material was ordered last year, but delayed (twice)

Expected delivery: 12/27/2020 02/17/2021?

Will be cut by JLab (<1 wk) Door sealed by me (mins.)

Task: Leak Rate Measurement

After installing the new gasket and sealing any leaks, the final leak rate needs to be obtained, for regulating gas flow

Responsible party: me Leak check / sealing: 1-2 days Rate measurement: 1-2 days

Gas used for leak checks: air + 1% hydrogen

New gauge connected directly to the GRINCH for pressure monitoring, to be tested

Task: PMT Gain Matching

to expedite this

12

Some problem ADC channels

A few noisy NINO channels

1-2 NINOs may need to be replaced (~1 week)

Task: Prepare cables for transport

Responsible party: me Time needed: 1-2 days (after prev. tasks completed)

TDC ribbon cables in conduits

Pre-Hall Timeline

- Leak rate measurement, seal door: ~Feb. 22* Mar. 5*
 - *Dependency: gasket delivery
- v792/NINO repair, Gain matching: Mar. 1* Apr. 15*
 *Dependency: translator rack noise eliminated
- GRINCH ready for Hall transport: < May 1
- Software development, Documentation: Now May 15

Preparing for Beam

Once in the Hall, all GRINCH systems need to be installed and re-checked:

- TDC / ADC cables and signals
- PMTs / readout modules / DAQ
- Final gas system and leak check
- All software to be tested and ready

GRINCH Software Needed

Offline analysis software

- PMT vs. PMT for track/cluster finding
- All TDC / ADC channels, time over threshold
- Single event display
- PMT rate counter ✓
- TDC multiplicities
- Could really use help with the online software + integration

- Online Monitoring

- HV / LV monitoring
- Online PMT rate counter, TDC / ADC
- Gas pressure monitoring
- Slow Controls / EPICS
 - Realtime PMT gain / voltage controls
 - Gas flow

with beam, we need to verify simulated PMT acceptances, p.e. yield, study blind spots in the mirrors

- Clustering, Integration with other SBS subsystems

GRINCH Documentation

• **GRINCH** wiki (fairly extensive):

https://hallaweb.jlab.org/wiki/index.php/BigBite_GRINCH

- Presentations, background information
- Cable maps and schematics, technical drawings, spare inventory
- All past equipment tests, specs, measurements, and studies

Needed: Instructions for running software, shift instructions, any missing safety documentation

• Approved TEDF GRINCH tasks on halist:

http://devweb.acc.jlab.org/CSUEApps/halist/atlis.php (JLab computer needed)

- #1595: GRINCH PMT checks and gain matching
- #1596: GRINCH gas pressure and leak tests
- Additional safety information:

https://hallaweb.jlab.org/12GeV/SuperBigBite/documents/ERR2017/final/GRINCH_OSP.pdf https://hallaweb.jlab.org/wiki/images/8/8e/C4F8O_Safety_Data_Sheet.pdf

Summary

- Except for the current noise issue, the GRINCH is capable of taking data, and has analysis software to be further developed
- Pre-Hall tasks:
 - Leak checks, Gain matching
- Ongoing tasks:
 - Decoder work, Software, Documentation
- Everything should be ready for the scheduled move

Backup slides

Expected Gas Performance

Gas	п	e [—] thr.	π thr.	
		(MeV/c)	(MeV/c)	
C ₄ F ₈ O	1.0014	9	2637	
N ₂	1.0003	21	5926	
CO ₂	1.0004	17	4671	
Freon12	1.0011	11	2984	
C4F10	1.0015	9	2522	

Assumes a 40cm electron track

Figure 11: Transmittance for 1.5 m of C4F8O at 1 atm and 20°C (Kubarovsky et al.).

Angular acceptance measurements

156 total measurements = [(max+min) horiz. angles + (max+min) vert. angles]*(3 horiz. pos.)*(13 vertical pos.)

Position corrections

Angular acceptance (vert.)

Dispersive Angles vs. Vertical Position (corrected)

Vertical position (cm), <-top--bottom->

Angular acceptance (horiz.)

Non-dispersive Angles vs. Horizontal Position (corrected)

~6 deg. blind spot

Moving from the bottom mirror upward, there is a blind spot of ~6deg. where reflected light hits the back of the next mirror, missing the PMT array

 \pm 6deg. ~ Cherenkov cone...

photon path

It will be interesting to see if/how this manifests in the data. Incomplete cluster rings?

Something to be mindful of when triggering?

Viton interactions

<u>http://chemours-site.force.com/CRG_VitonGuide</u>

The cracking is probably from long-term folding/storage

COMPATIBILITY

Weather Resistance:

Ozone Resistance:

Oxidation Resistance:

Excellent Outstanding (2wks/150 ppm) Outstanding

It should be installed and left alone

Types of Viton™for Air, <200°C	Rating	Types of Viton™for Hydrogen	Rating	Types of Viton™for Isopropyl Alcohol	Rating
Viton™ Extreme™ ETP	А	Viton™ Extreme™ ETP	Α	Viton™ Extreme™ ETP	Α
Viton™ GFLT	А	Viton™ GFLT	Α	Viton™ GFLT	Α
Viton™ GLT	А	Viton™ GLT	Α	Viton™ GLT	Α
F-type	Α	F-type	Α	F-type	Α
B-type	Α	B-type	Α	B-type	Α
A-type	А	A-type	Α	A-type	Α

Rating Legend

в

С

D

<10% volume swell. Elastomer may exhibit slight swelling and/or loss of physical properties

10-30% volume swell. Elastomer affected by chemical exposure (slight visible swelling and/or loss of physical properties).

30-50% volume swell. Elastomer affected by chemical exposure (moderate to severe swelling and/or loss of physical properties. Limited functionality possible but must be determined by testing).

>50% volume swell. Elastomer shows extreme volume swell and/or loss of physical properties. Not recommended for service.

Insufficient Data.

TDC time over threshold ("offline")

ADC – ToT Correlation (TDC vs. ADC)

Need to make a version of this plot for all channels

Also standardize the way to keep track of which TDC is tied to each ADC channel at any given time $_{_{31}}$

PMT Rate Counter

