# **Solid-DEMP Programs** with transversely polarized He3

Zhihong Ye Tsinghua University

#### □ SoLID: Solenoidal Large Intensity Device

- ✓ High Intensity  $(10^{37} ~ 10^{39} ~ \text{cm}^{-2}\text{s}^{-1})$  and,
- ✓ Large Acceptance

### SIDIS Programs:

- $\rightarrow$  E12-10-006 (A), SIDIS with Transversely Polarized He3, 90 days
- $\rightarrow$  E12-11-007 (A), SIDIS with Longitudinally Polarized He3, 35 days
- $\rightarrow$  E12-11-108 (A), SIDIS with Polarized Proton, 120 days
- $\rightarrow$  and bonus runs (Ay, Di-Hadron ...)

### Parity Violation Deep Inelastic Scattering (PVDIS):

- → E12-10-007 (169 days, A)
- $\rightarrow$  EMC with Calcium (proposed and continue developing)

#### $\Box$ J/ $\psi$ : Near Threshold Electroproduction of J/ $\psi$ at 11 GeV:

→ E12-12-006 (60 days, A-),

### Generalized Parton Distributions (GPDs):

- $\rightarrow$  Time-Like Compton Scattering (TCS) with J/Psi configuration (E12-12-006A)
- $\rightarrow$  Deep Exclusive pi- production (DEMP) with polarized He3 target and SIDIS configuration (E12-10-006B)
- → Other polarized-proton/neutron DVCS & DEMP with polarized targets, Doubly DVCS, etc.

### □ SoLID: Solenoidal Large Intensity Device

- ✓ High Intensity  $(10^{37} ~ 10^{39} ~ \text{cm}^{-2}\text{s}^{-1})$  and,
- ✓ Large Acceptance



SIDIS uses two polairzed targets J/psi uses unpolarized targets (plus different triggers)



#### **Detector Resolutions:**

Charged Particle:  $\frac{\delta p}{p} = 1.1 \sim 1.7\%$ ,  $\delta \theta = 1.0 \sim 1.3 mrad$ ,  $\delta \phi = 1.7 \sim 5.7 mrad$ , Vexrex-Z = 0.5~0.9cm Photons:  $\delta x = 1.0 \ cm$ ,  $\delta y = 1.0 \ cm$ , from EC reconstruction  $\delta VertexZ = 0.5cm$  (from GEM tracking with charged particles)



polarized

http://hallaweb.ilab.org/equipment/targets/polhe3/polhe3 tgt.html

+/- 17°, and will be +/-25° with new coils https://userweb.jlab.org/%7Eckeith/Frozen/Frozen.html http://twist.phys.virginia.edu/

- A new run-group proposal aside with the SoLID-SIDIS transversely polarized He3 experiment (E12-10-006)
- > Exclusive measurement of  $\pi^-$  production using Polarized He3 (  ${}^{3}He(e,e'\pi^-p)pp_{sp}$  )

$$e + \vec{n} \rightarrow e' + p + \pi^-$$

> Approved by SoLID collaboration and PAC45



- Probe GPDs with DEMP:
- GPD-E is not related to any already known parton distribution.

 $\sum_{q} \int_{-1}^{1} dx \tilde{E}^{q}(x,\xi,t) = G_{p}(t) \qquad Pseudoscalar form factor$ 

- $G_P(t)$  is highly uncertain because it is negligible at the momentum transfer of  $\beta$ -decay.
- $G_P(t)$  alone receives contributions from  $J^{PG}=0^{-1}$  states. These are the quantum numbers of the pion, so GPD- $\tilde{E}$  contains an important pion pole contribution.



For this reason, a pion pole-dominated ansatz is typically assumed:

$$\tilde{E}^{u,d}(x,\xi,t) = F_{\pi}(t) \frac{\theta(\xi > |x|)}{2\xi} \phi_{\pi}\left(\frac{x+\xi}{2\xi}\right)$$
 where  $F_{\pi}$  is the pion FF and  $\phi_{\pi}$  the pion PDF.

• Additional chiral–odd GPDs  $(H_T, E_T, \tilde{H}_T, \tilde{E}_T)$  offer a new way to access the transversitydependent quark content of the nucleon.

### > How to Probe $\tilde{E}$ with DEMP:

The most sensitive observable to probe *Ẽ* is the transverse single-spin asymmetry in exclusive π production:

$$A_{L}^{\perp} = \left(\int_{0}^{\pi} d\beta \frac{d\sigma_{L}^{\pi}}{d\beta} - \int_{\pi}^{2\pi} d\beta \frac{d\sigma_{L}^{\pi}}{d\beta}\right) \left(\int_{0}^{2\pi} d\beta \frac{d\sigma_{L}^{\pi}}{d\beta}\right)^{-1}$$

$$= \frac{\sqrt{-t'}}{m_{p}} \frac{\xi \sqrt{1 - \xi^{2}} \operatorname{Im}(\tilde{E}^{*}\tilde{H})}{(1 - \xi^{2})\tilde{H}^{2} - \frac{t\xi^{2}}{4m_{p}}\tilde{E}^{2} - 2\xi^{2}\operatorname{Re}(\tilde{E}^{*}\tilde{H})} \text{ where, } d\sigma_{\pi}^{\ L} = \operatorname{exclusive } \pi \operatorname{cross section for longitudinal} \gamma^{*}$$

- Frankfurt et al. have shown A<sub>L</sub><sup>⊥</sup> vanishes if Ẽ is zero. If Ẽ≠0, the asymmetry will produce a sinβ dependence.
   (*PRD 60(1999)014010*)
- A<sub>L</sub><sup>⊥</sup> is expected to display precocious factorization even at only Q<sup>2</sup>~2-4 GeV<sup>2</sup>:
  - ✓ At  $Q^2=10$  GeV<sup>2</sup>, Twist-4 effects can be large, but cancel in A<sub>L</sub><sup>⊥</sup> (*Belitsky & Műller PLB 513(2001)349*).
  - ✓ At  $Q^2$ =4 GeV<sup>2</sup>, higher twist effects even larger in  $\sigma_L$ , but still cancel in the asymmetry (*CIPANP 2003*).

Because of requiring the virtual photon to be longitudinally polarized, it has not yet been possible to perform an experiment to directly measure  $A_L^{\perp}$ 





8

Experimental Observables w/o LT Separation

M. Diehl, S. Sapeta, Eur.Phys.J. C41(2005)515.

□ Unpolarized cross section:

$$2\pi \frac{d^2 \sigma_{UU}}{dt d\phi} = \varepsilon \frac{d \sigma_L}{dt} + \frac{d \sigma_T}{dt} + \sqrt{2\varepsilon(\varepsilon+1)} \frac{d \sigma_{LT}}{dt} \cos \phi + \varepsilon \frac{d \sigma_{TT}}{dt} \cos 2\phi$$

Transversely polarized cross section has additional components 

$$d\sigma_{UT}(\phi, \phi_s) = \sum_k d\sigma_{UT_k}(\phi, \phi_s) = -\frac{P_{\perp} \cos \theta_q}{\sqrt{1 - \sin^2 \theta_q \sin^2 \phi_s}} \left[ \sin \beta \operatorname{Im}(\sigma_{++}^{+-} + \epsilon \sigma_{00}^{+-}) + \sin \phi_s \sqrt{\epsilon(1 + \epsilon)} \operatorname{Im}(\sigma_{+0}^{+-}) + \sin \phi_s \sqrt{\epsilon(1 + \epsilon)} \operatorname{Im}(\sigma_{+-}^{+-}) + \sin(\phi + \phi_s) \frac{\epsilon}{2} \operatorname{Im}(\sigma_{+-}^{+-}) + \sin(2\phi - \phi_s) \sqrt{\epsilon(1 + \epsilon)} \operatorname{Im}(\sigma_{+0}^{-+}) + \sin(2\phi - \phi_s) \sqrt{\epsilon(1 + \epsilon)} + \sin(2\phi - \phi_s) \sqrt{\epsilon(1 +$$

Gives rise to Asymmetry Moments 

$$A(\phi, \phi_s) = \frac{d^3 \sigma_{UT}(\phi, \phi_s)}{d^2 \sigma_{UU}(\phi)}$$
$$= -\sum_k A_{UT}^{\sin(\mu\phi + \lambda\phi_s)_k} \sin(\mu\phi + \lambda\phi_s)_k$$

Unseparated 
$$\sin\beta = \sin(\phi - \phi_s)$$
 Asymmetry Moment  
 $A_{UT}^{\sin(\phi - \phi_s)} \sim \frac{d\sigma_{00}^{+-}}{d\sigma_L {\binom{++}{00}}} \sim \frac{\operatorname{Im}(\tilde{E}^* \tilde{H})}{|\tilde{E}|^2}$  where  $\tilde{E} \gg \tilde{H}$ 

+ 
$$\sin \phi_s \sqrt{\epsilon} (1+\epsilon) \operatorname{Im}(\sigma_{+0}^{+-})$$
  
+  $\sin(\phi + \phi_s) \frac{\epsilon}{2} \operatorname{Im}(\sigma_{+-}^{+-})$   
+  $\sin(2\phi - \phi_s) \sqrt{\epsilon(1+\epsilon)} \operatorname{Im}(\sigma_{+0}^{-+})$   
+  $\sin(3\phi - \phi_s) \frac{\epsilon}{2} \operatorname{Im}(\sigma_{+-}^{-+}) \Big],$ 

#### $sin(\phi_s)$ Asymmetry Moment

$$A_{UT}^{\sin(\phi_S)} \sim \text{Im}[M_{0+++}^* M_{0-0+} - M_{0-++}^* M_{0+0+}],$$
  
helicities: [pion, neutron, photon, proton]

$$\mathcal{M}_{0-,++} = e_0 \sqrt{1-\xi^2} \int \mathrm{d}x \mathcal{H}_{0-,++} H_T,$$
$$\mathcal{M}_{0+,\pm+} = -e_0 \frac{\sqrt{t_{\min} - t}}{4m} \int \mathrm{d}x \mathcal{H}_{0-,++} \bar{E}_T.$$

### $\succ$ HERMES sin( = - <sub>s</sub>) Asymmetry Moment

#### S. Goloskokov et. al. [PLB 682(2010)345]

- Exclusive π<sup>+</sup> production by scattering 27.6 GeV positrons or electrons from transverse polarized <sup>1</sup>H without L/T separation.
- Analyzed in terms of 6 Fourier amplitudes for  $\phi_{\pi}, \phi_{s}$ .
- $\langle x_B \rangle = 0.13$ ,  $\langle Q2 \rangle = 2.38 \text{ GeV}^2$ ,  $\langle -t \rangle = 0.46 \text{ GeV}^2$



- Goloskokov and Kroll indicate the HERMES results have significant contributions from transverse photons, as well as from L and T interferences (*Eur Phys.J. C65(2010)137*).
- The HERMES data are consistent with GPD models based on the dominance of  $\tilde{E}$  over  $\tilde{H}$  at low -t.
- The sign crossing in the model curve at  $-t\approx 0.5$  GeV<sup>2</sup> is due to the large contribution from  $\widetilde{E}$  demanded

## **Physics Motivation**

- > HERMES sin( <sub>s</sub>) Asymmetry Moment
- Only measures the LT interference, while  $A_{UT}^{\sin(\phi-\phi_S)}$  has contributions from both LT and TT.
- Can provides additional GPD model constraints to aid in the interpretation of the unseparated asymmetry data.
   Any DEMP pion model needs to describe both A<sup>sin(φ<sub>S</sub>)</sup><sub>UT</sub> and A<sup>sin(φ-φ<sub>S</sub>)</sup><sub>UT</sub>
- HERMES data shows large asymmetries do not vanish at -t=0 Indicating strong contribution from transversely polarized photons at rather large W and Q<sup>2</sup>.



### HERMES sin(2 - s) Asymmetry Moment

- $sin(2\phi-\phi_S)$  modulation has additional LT interference amplitudes contributing that are not present in  $sin(\phi_s)$ .
- Can also improve description of other amplitude moments.
- Different moments provide complementary amplitude term information.

The remaining  $sin(\phi+\phi_s)$ ,  $sin(2\phi+\phi_s)$ ,  $sin(3\phi-\phi_s)$  moments are only fed by TT interference and are even smaller.





### Exclusive Mearsurement based on SIDIS Setup: ${}^{3}He(e,e'\pi^{-}p)pp_{sp}$

- During online data taken, share the same trigger events with SIDIS
- During offline analysis, identify knocked-out protons via TOF (don't need to precisely measure their momenta and angles)
- Reconstructed Missing mass and Missing Momenta of knocked-out protons to further suppress background.

Recoil Proton Detection: Time of Flight

<sup>3</sup>*He*(
$$e, e'\pi^{-}p$$
) $pp_{sp}$ 

- Need  $>5\sigma$  timing resolution to identify protons from other charged particles
- Existing SoLID Timing Detectors:
  - MRPC & FASPC at Forward-Angle:

cover  $8^{\circ} \sim 14.8^{\circ}$ , >3 ns separation.

- LASPD at Large-Angle:

cover  $14^{\circ} \sim 24^{\circ}$ , >1 ns separation.



- The currently designed timing resolution is sufficient for proton identification using TOF.
- We also can measure the momenta and angles of the proton via tracking reconstruction, but we currently don't use these info



### > Background Study via Missing Mass and Missing Momentum

- We have been very conservative in our estimations.
- The main background comes from the SIDIS channel where the target fragments may contain protons; In our study, we assume all target fragments contain protons
- We compute the missing mass and momentum as if the proton were not detected:

$$M_{miss} = \sqrt{(E_e + m_n - E_{e'} - E_{\pi^-})^2 - (\vec{p}_e - \vec{p}_{e'} - \vec{p}_{\pi^-})^2}$$
$$P_{miss} = |\vec{p}_e - \vec{p}_{e'} - \vec{p}_{\pi^-}|$$

- Of course, in the actual analysis, we will try to reconstruct the proton momentum as accurately as possible.
- If the resolution is sufficiently good, this would allow additional background discrimination, as well as the effect of Fermi momentum to be removed from the asymmetry moments on an event-by-event basis.

### > Background Study via Missing Mass and Missing Momentum



### Kinematic Coverage and Binning



- For this proposal, we only binned the data in 7 *t*-bins.
   In actual data analysis, we will consider alternate binning.
- All JLab data cover a range of  $Q^2$ ,  $x_{Bj}$  values.
  - $-x_{Bj}$  fixes the skewness ( $\xi$ ).
  - $-Q^2$  and  $x_{Bj}$  are correlated. In fact, we have an almost linear dependence of  $Q^2$  on  $x_{Bj}$ .
- HERMES and COMPASS experiments are restricted kinematically to very small skewness ( $\xi < 0.1$ ).
- We can measure the skewness dependence of the relevant GPDs over a fairly large range of  $\xi$ .

### > Unbinned Maximum Likelihood (UML) Method

- Instead of dividing the data into  $(\phi, \phi_s)$  bins to extract the asymmetry moments, UML takes advantage of full statistics of the data, obtains much better results when statistics are limited.
  - 1) Construct probability density function

$$f_{\uparrow\downarrow}(\phi,\phi_s;A_k) = \frac{1}{C_{\uparrow\downarrow}} \left( 1 \pm \frac{|P_T|}{\sqrt{1 - \sin^2(\theta_q)\sin^2(\phi_s)}} \times \sum_{k=1}^5 A_k \sin(\mu\phi + \lambda\phi_s) \right)$$

where  $A_k$  are the asymmetries that can minimize the likelihood function.

2) Minimize negative log-likelihood function:

$$\ln L(\boldsymbol{A}_{k}) = -\ln L_{\uparrow}(\boldsymbol{A}_{k}) - \ln L_{\downarrow}(\boldsymbol{A}_{k})$$

$$= \sum_{l=1}^{N_{MC}^{\uparrow}} \left[ w_{l}^{\uparrow} \cdot \ln f_{\uparrow}(\boldsymbol{\phi}_{l}, \boldsymbol{\phi}_{s,l}; \boldsymbol{A}_{k}) \right] - \sum_{m=1}^{N_{MC}^{\downarrow}} \left[ w_{m}^{\downarrow} \cdot f_{\downarrow}(\boldsymbol{\phi}_{m}, \boldsymbol{\phi}_{s,m}; \boldsymbol{A}_{k}) \right]$$

where  $w_l$ ,  $w_m$  are MC event weights based on cross section & acceptance.

- 3) As an illustration, reconstruct azimuthal modulations& compare:
  - Same method used by HERMES in their DEMP analysis [PLB 682(2010)345].



#### Projected Uncertainties

#### All effects on.

Includes all scattering, energy loss, resolution and Fermi momentum effects



#### Only Fermi momentum off.

Includes all scattering, energy loss, resolution effects. Similar to where proton resolution is good enough to correct for Fermi momentum effects.



#### All effects off.

Agreement between input and output fit values is very good. Validates the UML procedure.



### > Summary

- $A_{UT}^{\sin(\phi-\phi s)}$  transverse single-spin asymmetry in exclusive  $\pi$  production is particularly sensitive to the spin-flip GPD.
- $A_{UT}^{\sin(\phi s)}$  asymmetry can also be extracted, providing powerful additional GPD-model constraints and insight into the role of transverse photon contributions at small -t, and over wide range of  $\xi$ .
- High luminosity and good acceptance capabilities of SoLID make it well-suited for this measurement. It is the only feasible manner to access the wide -*t* range needed to fully understand the asymmetries.
- E12-10-006B shares the same SoLID-SIDIS experimental setup and will look for e- $\pi$ -p triple coincidence events.
- We used a sophisticated UML analysis to extract the asymmetries from simulated data in a realistic manner, just as was used in the pioneering HERMES data. The projected data are expected to be a considerable advance over HERMES in kinematic coverage and statistical precision.
- SoLID-DEMP measurement is also important preparatory work for future EIC.

The SoLID review committee identifies the SoLID-DEMP as the forth flagship experiment, in addition to the baseline programs (SIDIS, PVDIS, J/psi)