The Hard Questions in Nuclear Femtography Charles Hyde* *DOE DE-FG02-96ER40960 ### Start with an easy Question: Can we measure Compton Form Factors (CFFs)? - All variables are kinematic - CFF type from - Beam spin - Longitudinal target spin - Transverse target spin - Flavor - u, d from proton/neutron targets - Supplement with ρ , ω - glue from deep ϕ and J/ Ψ production - s from deep K, etc. - \mathcal{R} e & \mathcal{I} m parts from Energy-dependence, lepton-charge asymmetry $$\mathcal{H}_f(\xi, t; Q^2), \ \mathcal{E}_f(\xi, t; Q^2),$$ $\widetilde{\mathcal{H}}_f(\xi, t; Q^2), \ \widetilde{\mathcal{E}}_f(\xi, t; Q^2)$ $f = u, d, s, \text{glue}$ #### Measuring Compton Form Factors - Leading twist formalism exists! - It is almost a Linear Algebra problem to extract CFFs from [a sufficiently large set of] data! - Major caveats (frequently ignored) - Theory uncertainties - Kinematic and Dynamic higher twist amplitudes - Formalism depends on choice of light cone definition (finite $-t/Q^2$) - Only real tool is Q^2 -dependence, but 1/Q, $1/Q^2$, and $log(Q^2)$ separation requires high precision - Meson amplitudes have strong corrections to naïve asymptotic DA, & SCHC. - Experimental limits - Low-x_B means modest Q² - Hi- x_B means modest statistics and/or large $-t/Q^2$ corrections #### CFFs from data: 12 GeV Hall A DVCS - $x_B = 0.36$, four *t*-bins - Simultaneous fit to data at three Q² values - Statistically significant, but systematically ambiguous. - Strongly correlated error bars. 3/3/21 ## Can we measure Compton Form Factors? This is a HARD question which the CNF should try to answer! OLD DOMINION