

The Hard Questions in Nuclear Femtography

Charles Hyde*

*DOE DE-FG02-96ER40960

Start with an easy Question: Can we measure Compton Form Factors (CFFs)?

- All variables are kinematic
- CFF type from
 - Beam spin
 - Longitudinal target spin
 - Transverse target spin
- Flavor
 - u, d from proton/neutron targets
 - Supplement with ρ , ω
 - glue from deep ϕ and J/ Ψ production
 - s from deep K, etc.
- \mathcal{R} e & \mathcal{I} m parts from Energy-dependence, lepton-charge asymmetry

$$\mathcal{H}_f(\xi, t; Q^2), \ \mathcal{E}_f(\xi, t; Q^2),$$
 $\widetilde{\mathcal{H}}_f(\xi, t; Q^2), \ \widetilde{\mathcal{E}}_f(\xi, t; Q^2)$
 $f = u, d, s, \text{glue}$

Measuring Compton Form Factors

- Leading twist formalism exists!
 - It is almost a Linear Algebra problem to extract CFFs from [a sufficiently large set of] data!
- Major caveats (frequently ignored)
 - Theory uncertainties
 - Kinematic and Dynamic higher twist amplitudes
 - Formalism depends on choice of light cone definition (finite $-t/Q^2$)
 - Only real tool is Q^2 -dependence, but 1/Q, $1/Q^2$, and $log(Q^2)$ separation requires high precision
 - Meson amplitudes have strong corrections to naïve asymptotic DA, & SCHC.
 - Experimental limits
 - Low-x_B means modest Q²
 - Hi- x_B means modest statistics and/or large $-t/Q^2$ corrections

CFFs from data: 12 GeV Hall A DVCS

- $x_B = 0.36$, four *t*-bins
- Simultaneous fit to data at three Q² values
- Statistically significant, but systematically ambiguous.
- Strongly correlated error bars.

3/3/21

Can we measure Compton Form Factors?

This is a HARD question which the CNF should try to answer!

OLD DOMINION