Double Deeply Virtual Compton Scattering

Alexandre Camsonne Jefferson Laboratory Hall A CNF Mini workshop: Experiment and Theory Intersections: Future Planning March 3rd 2021

Outline

- Introduction DDVCS
- DDVCS crosssection
- DDVCS kinematic and observable
- Kinematical coverage
- CLAS12 setup
- SoLID J/psi and dedicated setup
- Hall C setup
- CNF Questions
- Conclusions

DVCS / Double DVCS $\gamma^* + p \longrightarrow \gamma'(*) + p'$

Guidal and Vanderhaegen : Double deeply virtual Compton scattering off the nucleon (arXiv:hep-ph/0208275v1 30 Aug 2002) Belitsky Radyushkin : Unraveling hadron structure with generalized parton distributions (arXiv:hep-ph/0504030v3 27 Jun 2005)

DDVCS cross section

•VGG model

•Order of ~0.1 pb = 10⁻³⁶cm²

•About 100 to 1000 smaller than DVCS

•Virtual Beth and Heitler

•Interference term enhanced by BH

•Contributions from mesons small when far from meson mass

4

Double Deeply Virtual Compton Scattering

Kinematical coverage

- DVCS only probes $\eta = \xi$ • line
- Example with model of ٠ GPD H for up quark
- Jlab : $Q^2 > 0$ ٠
- Kinematical range increases with beam energy (larger dilepton mass)

6

Kinematic coverage

Possible measurements

- PAC 43 : Measurement of Double Deeply Virtual Compton Scattering (DDVCS) in the dimuon channel with the SoLID spectrometer (Boer,Camsonne,Gnanvo,Sparveri,Voutier,Zhao)
- PAC 44 : Electroproduction of muon pairs with CLAS12: Double DVCS and J/ψ electroproduction (Boer,Guidal,Stepanyan,Guidal,Paremuzyan)
- Possible Hall C new detector

CLAS12 modifications for $ep \rightarrow e'p'm^+m^- @ 10^{37} cm^{-2} s^{-1}$

- Remove HTCC and install in the region of active volume of HTCC
 - a new Moller cone that extends up to 7°
 - a new PbWO₄ calorimeter that covers 7° to 30° polar angular range with 2π azimuthal coverage.
- Behind the calorimeter, a 30 cm thick tungsten shield covers the whole acceptance of the CLAS12 FD
- GEM tracker in front of the calorimeter for vertexing

HTCC

CLAS12 FD new configuration

- In this configuration the forward drift chambers are fully protected from electromagnetic and hadronic background
- Calorimeter/shield configuration will play a role of the absorber for the muon detector, i.e. the CLAS12 FD
- The scattered electrons will be detected in the calorimeter
- GEM based tracking detectors will aid reconstruction of vertex parameters (angles and positions) of charged particles.

SoLID JPsi Setup

mini-drift μ -RWELL detector

- Muons hitting the chambers at vary large incident angle
- ✓ Using µ-RWELL in mini drift mode ⇒ Excellent tracking capability with one detector layer at very low overall cost

Slide from Kondo Gnanvo

Curved mini drift $\mu\text{-RWELL}_3$

03/03/2021

Counts J/psi setup 60 days at 10³⁷ cm⁻²s⁻¹

Q2:Xbj

Dedicated setup for muon detection only

- In addition to muon detector
- Target moved 2m from Jpsi position inside and switch to 45 cm target
- Iron plate from 3rd layer yoke in front and behind calorimeter (low resolution e for trigger)
- Remove / Upgrade Gas Cerenkov
- Try to reach 10³⁸ cm⁻²s⁻¹
- 10 uA on 45 cm target

Expected accuracy dedicated setup 90 days at 10³⁸ cm⁻²s⁻¹ 120 22 100 80 60 40 20 2 0.2 0.25 0.3 0.35 0.4 0.1 0.15 Xbj Dedicated config ays at 10^38 cm^2.s⁻¹ 0.15 0.20<x_{bi}<0.30 3.6GeV²<Q²<4.4GeV² 0.1 0.1 2.0GeV²<Q²<3GeV² 0.4GeV²<-t<0.6GeV² 0.05 0.05 0 -0.05 0.34<x_{bi}<0.44 -0.05 6.1GeV²<Q²<6.9GeV² -0.12.0GeV²<O'²<3GeV² -0.1 0.4GeV²<-t<0.6GeV² -0.1503/03/2021200 200 -150-100 -50 50 -150-100-50 0 50 100 150 -200 0 100 150 200

Eta and xi coverage

 ξ vs |\eta| Q^2=3 x_bj=0.16 Qp=2.5 GeV^2 $\,$ 60 days Lum=10^{^{38}} cm^{^2} s^{^{-1}}

Eta Xi coverage large bin

 ξ vs |\eta| Q^2=3 x_bj=0.16 Qp=2.5 GeV^2 60 days Lum=10³⁸ cm⁻²s⁻¹

Hall C proposal

Higher luminosity ?

- Current could go up to 80 uA on 40 cm target ~ 7.10^{38} to cm⁻²s⁻¹
- Muon detector using GEM or uRWell should be ok since after material
- Tracker occupancy and photon background
 - Reduce amount of Copper in GEM
 - 2D MGPD readout
 - Micromegas option
 - Pixellized MAPS
 - Superconducting tracker option
- Calorimetry
 - Study liquid scintillator and cryogenics calorimeter option
 - Faster PMT or LAPPD/MCP PMT (1 ns width pulse to increase rate capability)
- Cerenkov
 - Faster PMT or LAPPD/MCP PMT (1 ns width pulse to increase rate capability)
 - HBD type Cerenkov for Large Angle calorimeter

Technically doable mostly matter of cost

CNF Question sheet

- what can be extracted from data, is it cross sections, asymmetries, both, CFFs?
- Asymmetries : 5 %
- Crossections : 10 % need to be studied
- what has been done to get to the CFFs?
- Looking into the future, what information is used to get: AM and similar mechanical properties, and the spatial structure?
- Azimuthal asymmetry
- How can theory help, what and where is it needed, what tools?
 - Impact on CFF and GPD fits
 - What accuracy is required for
 - Scheme for inclusion of data
- In particular, how are data going to be shared by the community, can we plan on designing a public website?
- Are pseudo data going to be available?
- VGG model
- What level of model-independence can we reach in the extraction of Compton form factors?
 - Not model dependent
- Skewdness dependence gives access to D-term

Conclusion

- Jlab 12 GeV beam along with high power target offers a unique opportunity to study DDVCS
- Higher energy would give higher kinematical reach
- Muon detection is interesting to distinguish from incoming electron and to increase luminosity
- Hall B DDVCS and SoLID Parasitic measurement on J/Psi could give a first measurements of DDVCS
- Hall C high luminosity detector proposal
- Dedicated setup could increase luminosity by a factor of 10 up to 10³⁸ cm⁻².s⁻¹ for improved statistical accuracy
- High statistics would allow binning in different variables to look a binning in Q² to probe xi eta surface with xi different of eta of GPDs
- Need develop physics case for proposals and funding requests

Backup

Counts SoLID dedicated setup 10^38 cm⁻²s⁻¹

Phi CM distribution Q^2=2.5 to 3 x_bj=0.13 to 0.17 tt=0.25 to 0.35 60 days Lum=1.10²⁶ cm⁻²s⁻¹

~2 % statistical error