

Constraints from Lattice Moments on Global Analyses

Focus on "how you used the transversity Mellin moment in the experimental analysis."

Lin, Melnitchouk, Prokudin, Sato, 1710.09858, Phys. Rev. Lett. 120, 152502 (2018)

1D Nucleon Structure (PDFs)

§ Lattice calculations use operator product expansion to obtain moments

➢ More nucleon matrix elements with physical pion masses
 ➢ Well-studied systematics → precision structures

 $\langle x^n \rangle_q = \int_{-1}^{1} dx \, x^n q(x) \mod x$ + + quark density/unpolarized $\langle x^n \rangle_{\Delta q} = \int_{-1}^{1} dx \, x^n \Delta q(x)$ helicity longitudinally polarized $\langle x^n \rangle_{\delta q} = \int_{-1}^{1} dx \, x^n \delta q(x)$ transversity very poorly known transversely polarized

Why Tensor Charges?

§ Example from PNDME

PNDME, 1806.09006

Very mild systematics: excited-state contamination

MICHIGAN STATE

Why Tensor Charges?

§ Example from PNDME

PNDME, 1806. 09006

Very mild systematics: lattice spacing and volumes

Why Tensor Charges?

§ Mild difference among fermion/gauge actions
 & Lattice results need only agree in the continuum limit

Tensor Charges Global Fit

- § A first attempt at a "global fit" of nucleon charge in 2017 § Only take lattice data that have \Rightarrow Pion masses $m_{\pi}^2 < 0.12 \text{ GeV}^2$ and $m_{\pi} L > 3$
- Multiple lattice spacings and volumes for continuum extrapolation

$$\langle x^n \rangle_{\delta q} = \int_{-1}^1 dx \, x^n \delta q(x)$$

PNDME (1606.07049), RQCD (1412.7336), LHPC (1206.4527)

Global analysis with 12 extrapolation forms: $g_T = 1.006(58)$

From Charge to Transversity

- § Despite recent x-dependent lattice calculations, precision flavor PDFs remain a few years away
- § Improved transversity distribution with LQCD g_{T}
- Proof of concept:

SIDIS π^{\pm} production data from proton and deuteron targets

Lin, Melnitchouk, Prokudin, Sato, 1710.09858, Phys. Rev. Lett. 120, 152502 (2018)

From Charge to Transversity

§ Improved work?

Use more experimental data and more lattice inputs Lattice QCD/global fit status LatticePDF Report, 2006.08636

Moment	Collaboration	Reference	N_{f}	DE	CE	FV	RF	E	3	Value				
	ETMC 19	(Alexandrou <i>et al.</i> , 2019b)	2+1+1		*	0	*	*	**	0.926(32)				
g_T	PNDME 18	(Gupta <i>et al.</i> , 2018)	2+1+1	*	\star	\star	*	*	*	0.989(32)(10)				
	$\chi QCD 20$	(Horkel <i>et al.</i> , 2020)	2+1		*	0	*	*	†	1.096(30)				
	LHPC 19	(Hasan $et al., 2019$)	2+1	0	\star	0	*	*	*	0.972(41)				
	Mainz 19	(Harris <i>et al.</i> , 2019)	2+1	*	0	*	*	*		$0.965(38)(^{+13}_{-41})$	0 1	5 0 20 0	25 0 30	
	JLQCD 18	(Yamanaka et al., 2018)	2+1		0	0	*	*		1.08(3)(3)(9)	0.1	5 0.20 0	.25 0.50	
	ETMC 19	(Alexandrou et al., 2019b)	2		*	0	*	*	**	0.974(33)				
	ETMC17	(Alexandrou et al., 2017d)	2		*		*	*		1.004(21)(02)(19)				
	RQCD 14	(Bali et al., 2015)	2	0	*	*	*			1.005(17)(29)				PNDME 20
$1\rangle_{\delta u^-}$	ETMC 19	(Alexandrou <i>et al.</i> , 2019b)	2+1+1		*	0	*	*	**	0.716(28)	0			
	PNDME 18	(Gupta et al., 2018)	2+1+1	*	*	*	*	*	*	0.784(28)(10)				ETMC 10
	JLQCD 18	(Yamanaka et al., 2018)	2+1		0	0	*	*		0.85(3)(2)(7)				ETIVIC 19
	ETMC 17	(Alexandrou et al., 2017d)	2		*		*	*		0.782(16)(2)(13)	ğ			
$1\rangle_{\delta d}$ -	ETMC 19	(Alexandrou <i>et al.</i> , 2019b)	2+1+1		*	0	*	*	**	-0.210(11)	ø	_	-	Mainz 19
	PNDME 18	(Gupta et al., 2018)	2+1+1	*	*	*	*	*	*	-0.204(11)(10)	Ĕ			
	JLQCD 18	(Yamanaka et al., 2018)	2+1		0	0	*	*		-0.24(2)(0)(2)	a,		_	
	ETMC17	(Alexandrou et al., 2017d)	2		*		*	*		-0.219(10)(2)(13)	_			RQCD 18
$1\overline{\rangle_{\delta s^{-}}}$	ETMC 19	(Alexandrou <i>et al.</i> , 2019b)	2+1+1		*	0	*	*	**	-0.0027(58)				
	PNDME 18	(Gupta et al., 2018)	2+1+1	*	*	*	*	*	*	-0.0027(16)			L B J	ETMC 15
	JLQCD 18	(Yamanaka et al., 2018)	2+1		0	0	*	*		-0.012(16)(8)				2111010
	ETMC 17	(Alexandrou et al., 2017d)	2		*		*	*		-0.00319(69)(2)(22				

"Precision" first moment available (including all lattice errors)

S. Mondal et al (PNDME), 2005.13779

 $\langle x \rangle_{\delta u - \delta d}$

0.15 0.20 0.25 0.30

How Can Lattice Help?

- § Exciting era using LQCD moments to help study nucleon structure
- ➢ Well-studied systematics → precision structures
 ➢ Address neglected disconnected contributions obtaining flavor-dependent quantities
- § LQCD cannot study all nucleon structure alone
 >> Flavor-dependent PDFs, an example shown here
 >> More can be done
- § For which other quantities can LQCD achieve a precision that would make a significant difference to our understanding of nucleon structure when combined with experimental data?

How Can Lattice Help?

THE PDFLATTICE2017 WORKSHOP

Backup Slides

First Continuum PDF

§ Nucleon PDFs using quasi-PDFs in the continuum limit

> Naïve extrapolation to physical-continuum limit

First Continuum PDF

§ Nucleon PDFs using quasi-PDFs in the continuum limit

>> Naïve extrapolation to physical-continuum limit

Moments of PDFs

§ Usually more than one LQCD calculation

Sometimes LQCD numbers do not even agree with each other...

Moments of PDFs

§ PDG-like rating system or average § LatticePDF Workshop $\langle x^{n-1} \rangle_{\delta q} = \int_{-1}^{1} dx \, x^{n-1} \delta q(x)$

- Lattice representatives came together and devised a rating system
- § Lattice QCD/global fit status

LatticePDF Report, 1711.07916, 2006.08636

Momen	t Collaboration	Reference	N_{f}	DE	CE	FV	RE	ES		Value	Global Fit
	ETMC 19	(Alexandrou <i>et al.</i> , 2019b)	2+1+1		*	0	*	*	**	0.926(32)	
g_T	PNDME 18	(Gupta <i>et al.</i> , 2018)	2+1+1	*	*	*	*	*	*	0.989(32)(10)	
	$\chi QCD 20$	(Horkel <i>et al.</i> , 2020)	2+1		*	0	*	*	†	1.096(30)	
	LHPC 19	(Hasan <i>et al.</i> , 2019)	2+1	0	\star	0	*	*	*	0.972(41)	
	Mainz 19	(Harris <i>et al.</i> , 2019)	2+1	*	0	*	*	*		$0.965(38)(^{+13}_{-41})$	0.10 - 1.1
	JLQCD 18	(Yamanaka et al., 2018)	2+1		0	0	*	*		1.08(3)(3)(9)	
	ETMC 19	(Alexandrou et al., 2019b)	2		*	0	*	*	**	0.974(33)	
	ETMC 17	(Alexandrou et al., 2017d)	2		*		*	*		1.004(21)(02)(19)	
	RQCD 14	(Bali et al., 2015)	2	0	*	*	*			1.005(17)(29)	
$\langle 1 \rangle_{\delta u}$	ETMC 19	(Alexandrou <i>et al.</i> , 2019b)	2+1+1		*	0	*	*	**	0.716(28)	
	PNDME 18	(Gupta et al., 2018)	2+1+1	*	*	*	*	*	*	0.784(28)(10)	0.14 0.01
	JLQCD 18	(Yamanaka et al., 2018)	2+1		0	0	*	*		0.85(3)(2)(7)	-0.14 - 0.91
	ETMC 17	(Alexandrou et al., 2017d)	2		*		*	*		0.782(16)(2)(13)	
$\langle 1 \rangle_{\delta d}$	ETMC 19	(Alexandrou <i>et al.</i> , 2019b)	2+1+1		*	0	*	*	**	-0.210(11)	
	PNDME 18	(Gupta et al., 2018)	2+1+1	*	*	*	*	*	*	-0.204(11)(10)	0.07 - 0.47
	JLQCD 18	(Yamanaka et al., 2018)	2+1		0	0	*	*		-0.24(2)(0)(2)	-0.31 0.41
	ETMC 17	(Alexandrou et al., 2017d)	2		*		*	*		-0.219(10)(2)(13)	
$\langle 1 \rangle_{\delta s^{-}}$	ETMC 19	(Alexandrou <i>et al.</i> , 2019b)	2+1+1		*	0	*	*	**	-0.0027(58)	
	PNDME 18	(Gupta et al., 2018)	2+1+1	*	*	*	*	*	*	-0.0027(16)	N / A
	JLQCD 18	(Yamanaka et al., 2018)	2+1		0	0	*	*		-0.012(16)(8)	IN/A
	ETMC 17	(Alexandrou et al., 2017d)	2		*		*	*		-0.00319(69)(2)(22)	

Moments of PDFs

- § PDG-like rating system or average $\langle x^{n-1} \rangle_{\delta q}$ § LatticePDF Workshop
- Lattice representatives came together and devised a rating system
- § Recent lattice QCD/global fit status

0.15 0.20 0.25 0.30

 $dx x^{n-1} \delta q(x)$

S. Mondal et al (PNDME), 2005.13779

Transversity

2006.08636, PDFLattice2019 report

Huey-Wen Lin — CNF miniworkshop (Feb. 10, 2021)

Х

Transversity

2006.08636, PDFLattice2019 report

Huey-Wen Lin — CNF miniworkshop (Feb. 10, 2021)

Х

Why Tensor Charges?

§ Example from PNDME

PNDME, 1806.09006

Very mild systematics: excited-state contamination

Nucleon Matrix Elements

Lattice-QCD calculation of $\langle N | \overline{q} \Gamma q | N \rangle$

§ Systematic uncertainty (nonzero a, finite L, etc.)

 ➢ Nonperturbative renormalization e.g. RI/SMOM scheme in MS at 2 GeV
 ➢ Extrapolation to the continuum limit (m_π→m_π^{phys}, L →∞, a→0)

