New Methodologies for DVES Data Analyses

February 10, 2021

Extraction Techniques

Novel Rosenbluth Extraction Framework for Compton Form Factors from Deeply Virtual Exclusive Experiments

arXiv: 2011.04484

Brandon Kriesten,* Simonetta Liuti,[†] and Andrew Meyer[‡]

Theory of Deeply Virtual Compton Scattering off the Unpolarized Proton

Brandon Kriesten^{*} and Simonetta Liuti[†] Department of Physics, University of Virginia, Charlottesville, VA 22904, USA. arXiv: 2004.08890

PHYSICAL REVIEW D 101, 054021 (2020)

Extraction of generalized parton distribution observables from deeply virtual electron proton scattering experiments

Brandon Kriesten,^{*} Andrew Meyer,[†] Simonetta Liuti,[‡] Liliet Calero Diaz,[§] and Dustin Keller[®] Department of Physics, University of Virginia, Charlottesville, Virginia 22904, USA

Gary R. Goldstein⁵ Department of Physics and Astronomy, Tufts University, Medford, Massachusetts 02155, USA

J. Osvaldo Gonzalez-Hernandez^{**} Dipartimento di Fisica, Università di Torino, INFN-Sezione Torino, Via P. Giuria 1, Torino 10125, Italy

Deeply Virtual Compton Scattering

B.K., S.L., et. al. PRD. 101, 054021 (2020)

Cross Section Formalism

$$F_{UU}^{\mathcal{I},tw2} = A_{UU}^{\mathcal{I}} \Re e \left(F_1 \mathcal{H} + \tau F_2 \mathcal{E} \right) + B_{UU}^{\mathcal{I}} G_M \Re e (\mathcal{H} + \mathcal{E}) + C_{UU}^{\mathcal{I}} G_M \Re e \widetilde{\mathcal{H}}$$

Rosenbluth Separation Results: Q2 dependence

B.K., S.L. arXiv: 2011.04484

Separation of H and E

B.K., S.L. arXiv: 2011.04484

Separation of H and E

$$\frac{F_{LU}^{\mathcal{I},tw2}}{B_{LU}^{\mathcal{I}}} \approx \frac{A_{LU}^{\mathcal{I}}}{B_{LU}^{\mathcal{I}}} \Im m \left(\mathbf{F}_1 \mathcal{H} + \tau \mathbf{F}_2 \mathcal{E} \right) + \mathbf{G}_{\mathbf{M}} \Im m \left(\mathcal{H} + \mathcal{E} \right)$$

Higher Twist Observables

Can we disentangle the Twist-3 GPDs from data?

$$F_{UU}^{\mathcal{I},tw3} = \Re e \left\{ A_{UU}^{(3)\mathcal{I}} \Big[F_1(2\widetilde{\mathcal{H}}_{2T} + \mathcal{E}_{2T}) + F_2(\mathcal{H}_{2T} + \tau \widetilde{\mathcal{H}}_{2T}) \Big] + B_{UU}^{(3)\mathcal{I}} G_M \, \widetilde{E}_{2T} + C_{UU}^{(3)\mathcal{I}} G_M \, \Big[2\xi H_{2T} - \tau (\widetilde{E}_{2T} - \xi E_{2T}) \Big] \right\}$$

Rajan, Englehardt, Liuti arXiv:1709.05770 Raja

Rajan, Courtoy, Englehardt, Liuti arXiv:1601.06117

Higher Twist Observables

10

Moving Forward

- Moving on from a harmonics description of the cross section is essential for transitioning into a new era of high precision deeply virtual exclusive scattering experiments.
- Can we access leading twist properties such as angular momentum? What about Twist-3 objects such as orbital angular momentum? Gluon observables?
 - Intersection between theory and data analysis.
- Exploring new paradigms of data analysis
 - Exploiting linear relations i.e. in the unpolarized cross section linear relations give us access to not just the CFF ReH but also ReE.
 - Sophisticated machine learning algorithms to simultaneously extract CFFs from all polarization configurations.

Backup

DVCS Extraction

